Nanoscale processes during the interaction of aluminosilicate and carbonate mineral surfaces with acid mine drainage (AMD)

K. Kollias1, A. Godelitsas1*, J.M. Astilleros2, S. Labas3, S. Kenou4, C. Potamitis5, M. Zervou6, A. Lagoyannis6, S. Harissopulos6, Th. Mavromoustakos6,4

1Faculty of Geology and Geoenvironment, University of Athens, Panepistimioupoli, 15784 Zographou, Greece
2Faculty of Geological Sciences, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
3Department of Chemical Engineering, University of Patras, University Campus, 26500 Patras, Greece
4Institute of Organic and Pharmaceutical Chemistry, NHRF, 48 V. Constantinou Av., 11635 Athens, Greece
5Institute of Nuclear Physics, NCSR “Demokritos”, 15310 Agia Paraskevi, Athens, Greece
6Department of Chemistry, University of Athens, Panepistimioupoli, 15771 Zographou, Greece

Macroscopic experiments (using pH-meter, ICP, XRD, SEM-EDS) have shown that the interaction of aluminosilicate and carbonate minerals with AMD is related to pH increase and subsequent removal of metals such as Fe, Mn, Zn and Pb. The subsequent study of the processes by means of advanced microscopic and spectroscopic techniques (in-situ AFM-AFM, XPS, RBS, Solid-State MAS-NMR) revealed distinct changes in the nanotopography and the composition of mineral near-surface layers, not particularly related to bulk structural changes. On the other hand, it was indicated that coupled dissolution and sorption (mainly surface precipitation/coprecipitation and adsorption or even desorption) phenomena occur simultaneously at mineral-water interfaces.

Taking into account the above experimental data, generalized figures can be suggested in order to describe in nanoscale the various dissolution and sorption mechanisms taking place during interaction of AMD with aluminosilicate (zeolite) and carbonate (calcite) mineral surfaces.