A NEW PROGRAM DEVELOPED IN MADRID FOR TIDAL DATA PROCESSING

por

A. P. Venedikov, R. Vieira, C. de Toro y J. Aronso

MADRID
1995
A NEW PROGRAM DEVELOPED IN MADRID FOR TIDAL DATA PROCESSING

A.P. Venedikov1,2), R. Vieira1), C. de Toro1), J. Armoso1)

1) Institute of Astronomy and Geodesy, Madrid
2) Geophysical Institute, Sofia

ABSTRACT

This paper is a description of a program named NSV for tidal data processing. Despite the considerable volume of the paper, it deals only with the most important elements of NSV, including its practical use. It is not possible to describe everything, even all algorithms, used in a program of several thousands statements, having a lot of different options and applications.

In the acronym NSV, SV is simply the name of an old program, while N means "New". The "New" itself means that we use an old algorithm, which has proven its validity, but through a new program, which has a lot of new elements. It is also related with the necessity a scientific program to be steadily improved, which we are namely doing with NSV.

The paper has two parts. In Part I more attention is given to the theory of NSV. People, more interested in the applications, may go directly to Part II, which deals with the practical use of NSV.

I. Basic algorithm of NSV.

1.1. General remarks about the method of analysis used by NSV.

The main function of NSV is tidal analysis by a method which will be referred as MV66. Its original version can be found in (Venedikov, 1966a,b, Melchior & Venedikov, 1968, Melchior, 1978, 1981). In NSV are also used ideas and algorithms for various kinds of processing of Venedikov (1979, 1981, 1984, 1986), Venedikov & Ducarme (1979), Simon et al. (1999), Toro et al. (1990, 1991, 1993a), Fernández et al. (1993) as well as suggestions made by Baker (1978a,b), Meyer (1980), and others.

MV66 is applied since a lot of time, successfully surviving a tremendous development of the computers, a considerable increase of the observation precision, as well as the appearance of more and more sophisticated tasks. This makes necessary to refresh the information about this method. Therefore we shall give the main principles of MV66 in some of the next Sections. We shall try to do this in a way which can be better understood than before.

However, NSV is not an application of a standard MV66. For example, in MV66 are given numerically fixed filters, while NSV is building up the filters at every application, and this can be done in many different ways. Actually, NSV is a sophisticated computational device through which, we hope, the processing can become an interesting research work in two directions:

(i) the user can apply MV66 in many variants, actually creating and testing different methods of analysis and

(ii) he can use various options which allow to study the data,
looking for perturbations and particular phenomena.

Of course, despite the statement (i) above, the user cannot escape from the fundamental scheme of MV66, whose elements are:

(a) model of the tidal signal which involves the grouping of the tides and the use of new (at the time) unknowns [Venedikov, 1961, 1966a] directly related with the unknown tidal parameters,

(b) filtration of intervals of length \(n \), e.g. \(n = 48 \), without overlapping,

(c) processing of the filtered numbers by MLS (the Method of the Least Squares).

The model mentioned in (a) seems to be completely justified. It has been employed in most of the Earth tide methods of analysis, e.g. in the methods of Chojnicki (1973), Schöller (1977) and ETERNA of Wenzel (1994a,b), as well as in Inamura et al. (1991), Ishiguro et al. (1983).

It can easily be shown that our model is equivalent to the model of the ocean tidal phenomena of Munk and Cartwright (1966), discussed also by Meyer (1982). Hence, any good program for Earth tide data analysis, using our model, including NSV, can be applied on ocean tidal data.

The computational scheme (b) and (c) is more controversial. The matter is that it can be conceived as a sampling of the data over a step of \(n = 48 \) hours. Such a sampling is of course illegal. It would be absolutely funny to expect to find waves of frequencies concentrated near 1 and 2 cpd (cycle per day) using data with a step 2 days.

The elementary proof that (b) and (c) are not a simple sampling is that MV66 has provided a huge amount of useful results and we do not know about any failure. Another one is that all other reasonable methods provide results very close to those of MV66. In this sense, although these methods have been created as negations of MV66, all of them are in favor of MV66.

In relation with this problem, the flexibility of NSV, about which is said in (i) and (ii) can be useful. Unlike the original version of MV66, NSV allows to use various filters. Thus the length of the filters \(n = 48 \) can be replaced by any even number of the same order, e.g. \(n = 36, 40, 42, 50 \). It is also possible to use a shift \(s \neq n \). Although such values are theoretically unacceptable, it is experimentally interesting to use such values. Even \(s = 1 \) is available, which is totally transforming our way of filtration into a moving filtration, similar to Chojnicki and ETERNA.

Other examples of flexibility is that one can change and test the grouping of the tides, the model of the drift, to determine the LP tides in many variants, to look for relations with non-tidal data and so on.

It is also interesting that through NSV can be computed residuals, drift, amplitude and phase variations and search for new tidal and non-tidal frequencies in different variants.

1.2. General model of the tidal data and model of the tidal signal.

Let \(y(t), t = 1, 2, 3, \ldots \) are hourly tidal data or observations, \(t \) being the time in hours. Almost all large records have gaps. Therefore the sequence \(t = 1, 2, 3, \ldots \) should be understood as having jumps at the time of the gaps.

We would like to recall that one of the merit of MV66 is that it takes the data such as they are, with gaps and arbitrary length, rejecting any production of artificial data through interpolation. In such a way we have followed the principle to adjust the algorithm to the
data and not the data to the algorithm.

In principle, an analysis of \(y(t) \) through the Method of the Least Squares (here and further MLS) consists in the following.

We have first to create a model \(M(t; x_1, x_2, \ldots, x_m) \) of \(y(t) \), which is a function of \(t \) and some unknown parameters \(x_1, x_2, \ldots, x_m \). Then writing

\[
y(t) = M(t; x_1, x_2, \ldots, x_m), \quad t = 1, 2, \ldots
\]

we get a system of equations of number equal to the number of the data, in unknowns \(x_1, \ldots, x_m \). Finally, the system (1) is solved by the MLS. The use of MLS allows to get results with known optimum qualities and, which is very important, though sometimes neglected, with a well defined estimation of the precision.

Generally, (1) has the expression

\[
y(t) = w_t + d_t + a_t + \varepsilon_t
\]

where \(w_t \) is the most interesting component and can be called the useful signal in the data \(y(t) \).

The remaining terms, with respect to \(w_t \), can be considered as noise, having both random and deterministic components. However, for some purposes, the second component \(d_t \) can also be considered as useful signal, which has to be well estimated and studied.

The third component \(a_t \) can be due to different meteorological phenomena, among which the air-pressure seems to be the most important. Within this Part I it will be ignored. However, in Part II we shall briefly consider the model of \(a_t \) used by N.S.V.

The last term \(\varepsilon_t \) is random component. We know that it is correlated, i.e. \(\varepsilon_t \) is not a WN (white noise). One of the reason for the correlation is that we are not able to create good enough models for \(d_t \) and \(a_t \), thus charging \(\varepsilon_t \) by the errors of these models. In the same time we do not dispose by any good estimation of the autocorrelation function or the covariance matrix of \(\varepsilon_t \). This in principle does not allow us to apply rigorously MLS directly on the hourly data \(y(t) \).

It is very natural to begin here with the model of \(w_t \).

In any case \(w_t \) is generated by a theoretical signal like
\[W_t = \sum \omega \cos (\phi + \omega t) \]

where \(\omega \) takes a set of known discrete values
\[\omega = \omega_1, \omega_2, \omega_3 \ldots \]
\(H_\omega \) is known theoretical amplitude and
\(\phi_\omega \) is known theoretical phase at \(t = 0 \).

In Figure 1a and 1c is represented how looks the amplitude spectrum \(H_\omega \) as a function of \(\omega \) of \(W_t \) in the main D and SD domains of \(\omega \). Each line of this spectrum is corresponding to a term in (3), i.e. to a tidal wave or tide of frequency \(\omega \) (here and further under frequency we understand angular frequency or velocity).

If \(W_t \) is represented by (3), the generated or observed signal \(w_t \) is

\[w_t = \sum \delta_\omega H_\omega \cos (\phi_\omega + \omega t + \kappa_\omega) = \sum h_\omega \cos (\varphi_\omega + \omega t) \]

where:
\(\delta_\omega \) is unknown observed amplitude factor,
\(\kappa_\omega \) is unknown observed phase shift with respect to \(\Phi_\omega \),
\(h_\omega = \delta_\omega H_\omega \) is unknown observed amplitude and
\(\varphi_\omega = \Phi_\omega + \kappa_\omega \) is unknown observed phase.

For the Earth tide data this expression has theoretical and empirical basis, supported by an abundant experience. More generally, including the case of ocean data, \(W_t \) can be considered (Munk et al., 1966), as an input to a system (Earth and ocean) with output \(w_t \).

Provided the system is linear, the output can be represented through (4). In this sense (4) as well as the model of \(w_t \) here considered can be used for both Earth and ocean tidal data. We have already a lot of experience in the application of our programs on ocean data (Carvajal, 1993).

The tidal part in (2) becomes very simple if (4) is represented as

\[w_t = \sum \omega \cos \omega t + \nu \sin \omega t \]
\[u_\omega = h_\omega \cos \varphi_\omega, \nu_\omega = -h_\omega \sin \varphi_\omega \]

which is linear with respect to the unknowns \(u_\omega \) and \(\nu_\omega \). However, a serious complication is that we have too many \(\omega \), some of which differ very little, i.e. the components of (5) are linearly dependent. E.g., in the development of Tamura are 1200 waves, i.e. 2400 unknowns and still more in (Xi Quinwen) and other new developments.

A solution of the problem is suggested through our model (Venedikov, 1961, 1966a).

The idea is to realize that the actual physical unknowns are not the amplitudes and the phases, \(h_\omega \) and \(\Phi_\omega \), but the parameters \(\delta_\omega \) and \(\kappa_\omega \).
These parameters define completely the output (4), i.e. they carry the total information about the phenomena.

There are theoretical and empirical evidences that \(\delta_\omega \) and \(\kappa_\omega \) do not vary very fast with \(\omega \). Hence, the actual number of different unknown quantities is not the huge number of \(h_\omega \) and \(\varphi_\omega \), but much lower.

This idea is applied in the following way.

As shown in Figures 1.a,c, there is a concentration of the energy in some bands or grouping of the tides around a small number of frequencies of some more important tides. These bands or groups can be defined through frequency intervals, say \(\Omega_1, \Omega_2, \ldots, \Omega_\mu \). In Figures 1.a,c a variant of such intervals are demonstrated. Each \(\Omega_j \) there has a name which is the symbol of Darwin of the most important tide in the corresponding interval.

As far as \(\Omega_j \) are narrow, we may suppose \(\delta_\omega = \text{const.} \) and \(\kappa_\omega = \text{const.} \) for \(\omega \in \Omega_j \). Then, in order to get linear expressions, we define the unknowns

\[
\begin{align*}
\xi_j &= \delta_\omega \cos \kappa_\omega = \text{const.} \\
\eta_j &= -\delta_\omega \sin \kappa_\omega = \text{const.}
\end{align*}
\]

for \(\omega \in \Omega_j, j = 1, 2, \ldots, \mu \)

Using this, (5) is transformed in the following simple expression

\[
\omega_t = \sum_{j=1}^{\mu} \left[c_{tj} \xi_j + s_{tj} \eta_j \right]
\]

with coefficients at the unknowns

\[
\begin{align*}
c_{tj} &= \sum_{\omega \in \Omega_j} H_\omega \cos (\Phi_\omega + \omega t), \\
s_{tj} &= \sum_{\omega \in \Omega_j} H_\omega \sin (\Phi_\omega + \omega t).
\end{align*}
\]

NSV is using a generalization of this model. Namely, given \(\Omega_j \) is not obligatory an interval, but, more generally, it is a set of frequencies \(\omega \). This means that we can extract some tides from a group corresponding to an interval and let them shape separate groups.

An example are the waves which we shall call P3 whose origin is the tidal potential of 3d degree. These are small waves whose spectrum is shown in Figures 1.b,d. The inconvenience of their existence is that if these waves remain in one and the same \(\Omega_j \) with other waves, the condition (6) is theoretically false.

An option of NSV is to take apart the P3 and let them create groups like those in Figures 1.b,d. Somewhat surprisingly, it appeared possible to separate such groups, i.e. to determine the corresponding parameters \(\delta \) and \(\kappa \), although they are overlapping other D and SD groups.

The practical use of NSV will be discussed in Part II.
Nevertheless, it may be interesting how simply this option of NSV is used.

At the first stage of work of NSV it sets a series of questions. One of them is

2.6. (SEPP3) SEPARATE THE TIDES OF DEGREE 3? y

If the answer is "y" (yes) as above, the P3 are determined separately. If the answer is negative, the P3 are set in their natural groups. Then NSV is applying a theoretical modulation of the amplitudes of P3. When 2.6. (SEPP3) is accepted this modulation is excluded.

Following this definition of Ω_j, NSV allows to pick up some other tides, e.g. given meteorological tide like S1, S2, ...

1.3. Model of the drift.

Due to the model discussed in Section 1.2, we dare say that the most interesting component, the useful tidal signal w_t, is the least problem of the tidal data processing. Much more serious problems create the remaining components in (2), especially the drift d_t.

In the following I_i = I(T_i) will denote an interval of the data with central epoch T_i and I-s will mean a set of I_i.

A natural solution of the drift problem, which seems (but only seems) to be good, is that of (Horn. 1959): d_t is represented, over a single I_i of length 732^h, as a polynomial of t. Wenzel (1976a) has suggested the drift to be approximated in I-s, named blocks, which may be defined by the gaps in the data, i.e. also in large I-s. However, there are not evidences that such approximations can be successful.

Our attempts to approximate d_t in large I-s, have shown that such approximations are not successful, even using polynomials of very high powers. The matter is that the approximation of d_t in an I_i by a polynomial of power k implies the supposition that d_t has not continuous derivatives of the same order. Since d_t is very often changing its behaviour, this supposition is not justified for large I-s.

In Figure 2 is shown an attempt to approximate the drift in a large interval by a polynomial, using the analysis method (Toro et al., 1993b). The power k = 17 is not arbitrarily selected. It is chosen using the AIC criterion of Akaike (Sakamoto et al., 1986). We get residuals which are obviously not satisfying.

In Figure 3 is given the approximation of the drift in the same data, but in separate I-s of length 48^h, through the option RCSAN of NSV. The residuals now are incomparably better than in Figure 2.

In this relation NSV is applying an approximation of d_t in short I-s in the following way.

The whole record is partitioned in I-s of equal length n, say n = 48. In principle, the I-s are without overlapping, i.e. the shift between I_i and I_{i+1} is s = n or, if there is a gap, s > n. Optionally,
for experimental purposes, one can use \(s > n \) (without gaps) or \(s < n \), i.e. intervals with overlapping.

The default value of \(n \) is \(n = 48 \), which has been most frequently used in the applications of MV66. As said above, NSV can use other values of \(n \). Nevertheless, we shall sometime use the number 48, as if it a fixed one, but it should be understood that optionally we can use other values.

Within every \(I_i \) is used a time \(\tau \) measured from \(T_i \), i.e.

\[
\tau = t - T_i = -\nu, -\nu + 1, \ldots, n - 1/2,
\]

e.g.

\[
\tau = -23.5, -22.5, \ldots, +23.5 \text{ for } n = 48.
\]

The model of \(d_t \) in \(I_i \) is accepted to be

\[
d_t = \zeta_{i0} + \zeta_{i1}(\tau/\nu) + \ldots + \zeta_{ik}(\tau/\nu)^{k}, \tau = t - T_i, T_i - \nu \leq t \leq T_i + \nu
\]

where, it is very essential, \(\zeta_{ij} \), \(i = 0, 1, \ldots, k \) are unknowns specific for given \(I_i \). This is indicated by the subscript \(i \) of \(\zeta_{ij} \).

Between the models of \(d_t \) in the neighboring \(I_i \) and \(I_{i+1} \) are not imposed any conditions, although theoretically we should have equal values at time \(T_i + n/2 \) and \(T_{i+1} - n/2 = T_i + n/2 \) (if there is not a gap). Our explanations are (i) we do not use \(d_t \) at just \(T_i + n/2 \), because \(\nu = n - 0.5 \) and (ii) the lack of conditions allows arbitrary discontinuities between \(I_i \) and \(I_{i+1} \). If there are important discontinuities within given \(I_i \), they do not affect the global approximation of \(d_t \) in the other I-s. If the situation in given \(I_i \) is too bad, NSV allows to distinguish this and eliminate such an \(I_i \).

In connection with this model and our partition into I-s it is convenient to use some vectors of size or dimension \(n \).

Let \(c(\tau) \) is a function of \(\tau \), e.g. \(c(\tau) = \cos \omega \tau \). We shall denote by \(c \) the vector column (calling it only vector) of the values of \(c(\tau) \) in any \(I_i \)

\[
c = \begin{bmatrix} c(\tau) \end{bmatrix} = \begin{bmatrix} c(-\nu) & c(-\nu + 1) & \ldots & c(\nu) \end{bmatrix}^*
\]

where * denotes the transposition of a matrix.

In the case of \(y(t) = y(T_i + \tau) \) and \(d(t) = d(T_i + \tau) \) we shall use the vectors
\[y_1 = y(T_1) = \begin{bmatrix} y(T_1 + \tau) \end{bmatrix} \]
\[d_1 = d(T_1) = \begin{bmatrix} d(T_1 + \tau) \end{bmatrix} \]

whose elements are the values of \(y(t) \) and \(d(t) \) in given \(I_1 \). Here \(\tau \) is taking the values (9) while \(T_1 \) and the subscript \(i \) remain fixed, indicating the relation with given \(I_1 = I(T_1) \).

Let, according to (11),

\[p_1 = \begin{bmatrix} (\tau/\nu)^1 \end{bmatrix} \]

Then the model (10) of the drift can be represented in the vector form

\[d_1 = d(T_1) = \sum_{i=0}^{k} c_{i1} p_i. \]

In NSV for intervals of \(n \approx 48 \) the default value of \(k \) is \(k = 2 \) and, if \(n < 48, k = 1 \). If LP (long period) waves are determined, using large \(I \)-s, e.g. \(n = 360, k = 1 \). If LP are determined in parallel with the D or SD waves, \(k \) is set to be \(k = 0 \).

Of course, \(k \) is optional and can be modified if the question:

3.1. (NFINT)NEW POWER \(k \) OF THE DRIFT POLYNOMIALS?

gets an answer "yes". Then the user is asked to enter the value of \(k \).

At the end of this discussion of \(d_1 \) we would like to point out that a very interesting model is suggested in (Tamura et al., 1991, Ishiguro et al., 1983).

1.4. The stage of filtration of NSV.

NSV is proceeding the determination of the main species D, SD,...
together, at one and the same time, but in parallel, independently from each other. Thus in the first stage mentioned in (b), Section I.1, we apply different filters for every species. In this relation in the following we have in mind filtration and processing related with one of the species.

More concretely, the first stage consists in the application of one even and one odd filter. The filters can be considered as vectors, according to (11), namely

\[f = \begin{bmatrix} f_\tau \end{bmatrix}, f_\tau = f_{-\tau} \text{ (even filter)} \]
\[g = \begin{bmatrix} g_\tau \end{bmatrix}, g_\tau = g_{-\tau} \text{ (odd filter), } \tau = -\nu, -\nu + 1, \ldots \nu. \]
where \(f_\tau \) and \(g_\tau \) are the coefficients of the filters.

The filtration consists in the computation of the filtered numbers

\[
(16) \quad u(T_i) = f^*y_i = \sum_{\tau=-\nu}^{\nu} f_\tau y(T_i+\tau),
\]

\[
(16) \quad v(T_i) = g^*y_i = \sum_{\tau=-\nu}^{\nu} g_\tau y(T_i+\tau)
\]

related with \(I_i \). We have an application of \(f, g \) on the \(I_i \)-s. Thus the filters are applied with a shift \(s \geq n \), unlike the usual moving filtration when a filter is applied with \(s = 1 \).

In the second stage of the analysis, the set of \(u(T) \) and \(v(T) \) are processed by MLS, instead of the hourly data \(y(t) \). This is namely seeming to be a sampling with a step \(n = T_{i+1} - T_i \). Therefore this procedure needs our explanations.

Let \(y(t) \), \(t = 1, 2, \ldots, N \) are \(N \) data without gaps. If \(y(t) \) can be submitted to a Fourier analysis, we have to compute, for given Fourier frequency \(0^\circ < \omega < 180^\circ \),

\[
(17) \quad \hat{x}(\omega) = (2/N) \sum_{t=1}^{N} \text{Exp}(i\omega t) y(t) \quad (i^2 = -1).
\]

Let \(N = q n \) and the data are partitioned in our \(I_i \)-s \(I_i \) of length \(n \). Just the same \(\hat{x}(\omega) \) can be computed in the following 2 stages.

(i) We compute the filtered numbers \((16)\) using as filters

\[
(18) \quad f = \left[(2/n)\cos \omega \right] \quad \text{and} \quad g = \left[(2/n) \sin \omega \right]
\]

which will be called FFIL (Fourier Filters).

(ii) then, using the filtered numbers \((16)\), we compute

\[
(19) \quad \hat{x}(\omega) = \left(1/q \right) \sum_{i=1}^{q} \text{Exp}(i\omega T_i) [u(T_i) + iv(T_i)]
\]

which is identical to \(\hat{x}(\omega) \) in \((17)\).

Thus we have, rather similarly to NSV: stage (i) filtration of intervals \(I_i \) without overlapping, and stage (ii) processing of the filtered numbers which is a Fourier analysis of data with a step \(n \) hours.

If only \((19)\) is considered, this would seem an illegal analysis of a sampled data over a step \(n \) hours. On the contrary, if the nature of the filters is considered, we have a legal direct processing of hourly data.

By the way, the computations after \((19)\) is much faster than \((17)\), i.e. more computing time is not always necessary for getting better
results.
Let us denote
\[(20)\] \[c(\omega) = [\cos \omega \tau] \quad \text{and} \quad s(\omega) = [\sin \omega \tau] \]

The response of the filters \(f, g\) to a frequency \(\omega\) is
\[(21)\] \[\rho_f(\omega) = f^*c \quad \text{and} \quad \rho_g(\omega) = g^*s.\]

If \(\rho(\omega) = 0\), the corresponding \(\omega\) (wave of frequency \(\omega\)) is eliminated and, if \(\rho(\omega) \neq 0\), \(\omega\) is retained or reduced by a factor \(\rho(\omega)\). Otherwise, \(\omega\) is amplified by a factor \(\rho(\omega)\).

If \(f^*p_1 = g^*p_1 = 0\) for the vectors in (14), we have an elimination of the \(d\) in all \(I_1\), as far as (14) is a good model of \(d\).

Let \(f = f_0\) and \(g = g_0\) are created through (18) for \(\omega = \omega_d = 15^\circ\) and \(n = 48\), \(\omega_d\) being one of the main D frequencies. Then we have
\[(22)\] \[\rho_f(0) - f_0^*p_0 = \rho_g(0) - g_0^*p_0 = 0,\]
i.e., \(f_0\) and \(g_0\) eliminate a drift represented by a constant which can arbitrarily changing its values.

Further
\[(23)\] \[\rho_f(15) - \rho_g(15) = 1 \]
\[\rho_f(30) - \rho_g(30) = 0 \]
\[\rho_f(45) = \rho_g(45) = 0.\]

Since all D tides have \(\omega \approx 15^\circ\), SD tides \(- \omega \approx 30^\circ\) and all TD tides \(- \omega \approx 45^\circ\), we can say that the filters \(f_0\) and \(g_0\) amplify the D tides and eliminate or retain the SD and the TD species.

If we build up filters using once \(\omega_{SD} = 30^\circ\), then \(\omega_{TD} = 45^\circ\), which are also Fourier frequencies for \(n = 48\), we shall get, together with \(f_0\) and \(g_0\), 3 pairs of filters which, actually, separate the main tidal species, eliminating a model of the drift of very low power \(k = 0\).

It appears that in the Fourier analysis we have a first stage consisting in application of filters which are tending to eliminate the drift (however, only as a constant in every \(I_1\)) and separate the main tidal species.

If there is a drift and the sophisticated tidal spectrum, we have to apply MLS instead of Fourier. In (Venedikov 1964b) is shown that the application of MLS directly on \(y(t)\) has also the stage filtration of \(I_1\).

We have also FFIL but they have to be orthogonalized with respect to the drift polynomials. I.e. we have filters which eliminate the drift with the least possible deviations from FFIL. From this stage we get \(u(T), v(T)\) which are further processed.

In (Venedikov, 1964a) and (Wenzel, 1976a,b, 1977, Chojnicki, 1976, Meyer, 1980) has been established that the hourly \(y(t)\) are correlated
(non-WN or colored noise). On the contrary, for various reasons, one of them the distance n between our I_1, $u(T_1)$, $v(T_1)$ are not correlated or considerably less correlated than $y(t)$. Follows the natural idea the second stage to be made, as said in (c) in Section I.1, i.e. to process $u(T)$, $v(T)$ by MLS as observations instead of $y(t)$.

Again in (Venedikov, 1964b) is shown that in this way we shall get estimates of the unknowns very close to the direct processing of $y(t)$. In the same time we shall have a more correct application of MLS with a rigorous estimation of the precision. The latter will reflect the effect of the drift and meteorological perturbations, which are frequency dependent, i.e. different for the main tidal species.

1.5. Construction of the filters by NSV.

The main idea is to get the filters as operators, solving equations about the data $y(t)$ in one, whichever I_1, according to the MLS. This idea has been applied in (Venedikov, 1966b) and further developed in (Venedikov, 1984) and NSV.

It has been said that the expression (5) cannot be used because there are too many waves. However, if we remain within a given short I_1, with $n=48$, (5) can approximate the tidal signal using a very small number of the most important waves. Taking into account this and the model (14), we may use the following equations in vector form

$$\sum_{\omega} [u_\omega c(\omega) + v_\omega s(\omega)] + \sum_{i=0}^{k} \zeta_i p_i = y_1 $$

for the data in anyone fixed I_1, where ω takes a limited number of values, e.g. $\omega = 15^\circ$, 30° and 45°.

The solution of (24), according to MLS, can be represented as

$$u_\gamma(T_1) = f_\gamma y_1, \quad v_\gamma(T_1) = g_\gamma y_1$$

where γ is one of the frequencies ω in (24) and f_γ, g_γ are vectors obtained through the orthogonalization of $c(\gamma)$ and $s(\gamma)$ respectively, with respect to all other vectors in (24). This means that f_γ, g_γ are filters which remain as close as possible to the FFIL, the deviations being imposed by the presence of the drift. Due to the orthogonal properties, f_γ, g_γ will amplify the corresponding $\omega = \gamma$ and eliminate all $\omega \neq \gamma$, as well as the model representing the drift.

Let first $\gamma = \omega_{b1}$, then $\gamma = \omega_{sd}$ and, finally, $\gamma = \omega_{td}$. If the subscript γ in (25) is replaced by 1, 2 and 3 corresponding to D, SD and TD, as well as to 1 cpd, 2cpd and 3 cpd, in the same way as above we shall get 3 pairs of filters f_j, g_j through which we shall get 3 sets of filtered numbers which can be used.
\[u_1(T_1), v_1(T_1) \] for the determination of the D tides,
\[u_2(T_1), v_2(T_1) \] for the determination of the SD tides,
\[u_3(T_1), v_3(T_1) \] for the determination of the TD tides.

Obviously, all this can be expanded for the determinations of tides of higher frequencies like 4, 5 and 6 cpd.

Since the construction of the filters is related with the equations (24), we have to select the components, taking part there and, of course the number \(n \) which is the length of the \(l\)-s, as well as of the filters. In NSV the default option is

\[n = 48 \] as length of the filters and \(f\)-s,
\[k = 2 \] for the model of the drift
S1, O1, S2, M2, S3, S4, S5, S6 as tidal components.

The set of tides indicated here means that \(\omega \) in (24) takes the values of the frequencies of these waves, i.e. \(\omega = \omega(S1), \omega(O1), \ldots \omega(S6) \). Obviously to each tide or \(\omega \) are corresponding two vectors \(c(\omega), s(\omega) \). We shall denote the couple \((c, s) \) corresponding to a tide by the symbol of the corresponding tide.

In order to get a good approximation and separation it may be necessary to deal with 2, even more than 2 tides of one and the same species, e.g. S1 and O1. Then (24) cannot be directly solved. Therefore NSV first makes an orthogonalization of such components, after which (24) is solved. E.g. if in (24) are included S1, O1, Q1 then O1 is made orthogonal to S1 and Q1 - orthogonal to both S1 and O1.

In NSV the filters are obtained in the following way, which is an ordinary application of MLS on the data of any \(l_i \).

Let \(C \) is the matrix of all vectors taking part in (24). Then (24) can be represented as

\[Cx_i = y_i \]

where \(x_i \) is the vector of all unknowns in (24). It is essential, that \(C \) is one and the same for all \(l_i \), while \(x_i \) is different, depending on \(y_i \).

The MLS solution, under the assumption of WN, is given by the estimates

\[\bar{x}_i = (C^* C)^{-1} C^* y_i. \]

If (27) is used, \(C \) is created by the following vectors or components

\[C = \begin{bmatrix} p_0 & p_1 & p_2 & S1 & O1 & S2 & M2 & S3 & S4 & S5 & S6 \end{bmatrix} \]

\[F = \begin{bmatrix} f_1, g_1 & f_2, g_2 & f_3, g_3 & f_4, g_4 & f_5, g_5 & f_6, g_6 \end{bmatrix} \]

where each tide should be understood as the couple of the corresponding vectors \(c(\omega) \) and \(s(\omega) \). According to what was said above, here O1 and M2
are only components of O1 and M2, orthogonal to S1 and S2 respectively.

NSV, in relation with (29) creates the matrix \(F = C(C^*C)^{-1} \). It is composed by vectors, corresponding to the vectors in \(C \), some of them shown in (30).

Since \(F^*C = I \) (identity matrix), every couple \(f, g \) in \(F \) are filters amplifying the corresponding tide and eliminating all other tides, together with the drift vectors \(p \). Thus \(f_i, g_i \) will amplify S1, will eliminate all other tides (but only the orthogonal component of O1) and the drift model.

We obtain, through the MLS solution (29) and the matrix \(F \) the filters \((f_1, g_1), (f_2, g_2) \) and \((f_3, g_3) \) which can be used to eliminate the drift and separate the tidal species. They can be used for the separate determination of the D, SD and TD tides respectively. In this relation we shall call these filters D, SD and TD filters.

Through (30) we also get filters \(f_j, g_j, j > 3 \), which can be used for the determination of the species of higher frequencies.

In the application of NSV all elements (24) of the filters can easily be changed. It is even possible to make them amplify and eliminate selected non-tidal frequencies.

In Figure 4 is shown that the default filters (27) of NSV do not considerably deviate from the FFIL.

Very important characteristic of a filter is the quantity which we shall call RSTN (signal-to-noise ratio), computed through

\[
RSTN = \frac{(2/n)\text{Var}(y(t))}{\text{Var}(h)}
\]

where \(h \) is a filtered signal of power 1, amplified by factor 1. The variances are computed theoretically, under the assumption of a WN.

If NSV is reasonably applied, we have

\[
\text{for the filters in NSV: } RSTN \approx 0.75, 0.80
\]

\[
\text{for the optimum Fourier filters: } RSTN = 1.
\]

We loose about 20-25% of precision and information which is the price of the elimination of the drift.

A high RSTN is of crucial importance. It is a guarantee that we remain close to the theoretically motivated scheme in (Venedikov 1964b) and the FFIL and that we can process the \(u(T) \) and \(v(T) \) instead of \(y(T) \).

Therefore NSV cannot use high pass filters without a separation of the main species. Such filters have much lower RSTN than pass band filters like our filters. For example, the filter of Pertsev, applied as a high pass filter by Chojnicki and ETERNA, has a very low RSTN = 0.06. Due to this these methods are obliged to apply a moving filtration with a shift \(s = n \).

It should be noted that this filter remains an excellent device for the estimation of the drift, as a low-pass filter. Then it is also a pass band filter with a very high RSTN = 0.81.

In Figure 5 is shown the response of some of the filters of NSV. Compared to FFIL, we have a better elimination of the low frequencies (the drift) and better separation of the main species. The FFIL eliminate the non-tidal frequencies 7.5, 22.5 and 37.5. Our filters do not eliminate them because there has never been evidences for particular power concentrated at these domains of the spectrum.
I.6. Processing of the filtered numbers.

The second stage of the analysis consists in applying the method of
least squares on the filtered numbers. This means that we have to
create the observation equations for \(u(T_i) = f \ast y_i \) and \(v(T_i) = g \ast y_i \) where
\(f, g \) is one of the pairs of filters in (30), i.e. in \(F = C(G^\ast C)^{-1} \).

These filters eliminate (more or less well) the drift. Therefore,
in creating the equations we have to take into account only the tidal
component. We have to use the model considered in Section I.2, namely
(6), (7) and (8). Obviously, we have to take into account the effect of
the filters which an amplification of the tides by the factor (21). Also
\(g \) is changing all phases by \(\pi /2 \), while \(f \) keeps the phases the same.

Having in mind all this we get, the observation equations

\[
(33) \sum_{j=1}^{\mu} \left[c_j(T_i) \xi_j + s_j(T_i) \eta_j \right] = u(T_i)
\]

\[
\sum_{j=1}^{\mu} \left[-s_j(T_i) \xi_j + c_j(T_i) \eta_j \right] = v(T_i), i = 1, 2, \ldots, N
\]

where \(N \) is the number of the \(I-S \) and the coefficients at the unknowns \(\xi \)
and \(\eta \) are

\[
(34) c_{j_1}(T) = \sum_{\omega \in \Omega_j} \rho_{j_1}^{(\omega)} h_{j_1} \cos (\varphi_{j_1} + \omega T),
\]

\[
s_{j_1}(T) = \sum_{\omega \in \Omega_j} \rho_{j_1}^{(\omega)} h_{j_1} \sin (\varphi_{j_1} + \omega T),
\]

where \(l = f \) or \(g \) corresponding to the filters \(f \) and \(g \),
\(\rho_{f}^{(\omega)} \) is response of the even filter \(f \),
\(\rho_{g}^{(\omega)} \) is response of the odd filter \(g \).

Since \(\omega \) is multiplied by \(T \) and the shift between the intervals is
\(s = n \) (if there are not gaps), it seems that \(\omega \) can be considered as \(s \omega \),
e.g. \(48 \omega \), with heavy aliasing problems. Actually, the coefficients
remain functions of the initial \(\omega \) through \(\rho(\omega) \) and they can easily be
solved. All suspected aliases are either eliminated through low \(\rho(\omega) \) or
they can be taken into account in the equations, if it is necessary.

After the equations (33) are created, it is a well known MLS
procedure to solve them, to obtain the estimates of the unknowns \(\xi \) and
\(\eta \), then \(\delta \) and \(\kappa \), accompanied, of course, by estimates of their
variances, i.e. of the precision. For the experimentation of different
variant of the analysis, e.g. using different grouping of the tides, NSV
provides the criterion of AIC of Akaike (Sakamoto, et al., 1986). The
use of AIC is very simple: among several variants, the best one is is
the variant with the lowest AIC.

We recall that (33) are equations for one of the tidal species. We
have such equations created for all species we want to determine, which
are solved in parallel, but independently. This allows to get estimates of the variances different for every species.

Generally, the estimation of the precision through the filtered numbers, which is thus frequency dependant, is one of the most important features of NSV.

We recall that (33) are equations for one of the tidal species. We have such equations created for all species we want to determine, which are solved in parallel, but independently. This allows to get estimates of the variances different for every species.

Generally, the estimation of the precision through the filtered numbers, which is thus frequency dependant, is one of the most important features of NSV.

II. Application of the program NSV.

NSV has been developed using the ALPHA computer of the Computing Center of the University Complutense of Madrid. Available are the source routines which have to be compiled and linked. If another computer is used, small modifications are necessary, at least the subroutines for the date and time determination should be replaced.

Also available is a PC version of the program which can be directly used on PC of type 486 and 586. Available is a package with the .EXE of NSV, accompanied by some permanent data files, necessary for the execution, as well as by a small data bank, prepared for processing, according to the formats used by NSV.

The execution is made using the command "NS". NSV needs a series of files accompanying the program and, of course, some tidal data files.

II.1 Data files.

A data file is composed by hourly ordinates or observations. It can be organized in the well known and widely used, in the Earth tidal domain, international format, like Example 1

Example 1. A data file.

<table>
<thead>
<tr>
<th>date DT</th>
<th>12 consecutive ordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYYMMDDH Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12</td>
<td></td>
</tr>
<tr>
<td>[13]8710172 592 3034 5003 6156 6353 5660 4333 2757 1341 432 210 666</td>
<td></td>
</tr>
<tr>
<td>[13]0 (a blank line or line with YY = 0 means a gap)</td>
<td></td>
</tr>
</tbody>
</table>

Here [13] are 13 columns which are not used by NSV so that in [13] can be written any 13 symbols, e.g. 13 blanks.

In Example 1 is shown how a gap is indicated. Notice:

(i) One zero or blank line is enough to indicate a gap of any length. Several blank lines have the same effect.

(ii) If there is not a gap but a jump between two lines which is not corrected, it should be indicated as a gap between these lines, although there is not a gap.
In this format 5 columns or digits are reserved for one ordinate. NSV allows to use larger numbers of columns, namely 5, 7, 8 or 9 columns per ordinate. The number of the columns is defined by the input number NCOL, as shown in Section II.3.

The ordinates should be integer numbers. Whatever are the data, the unit of an ordinate should be 0.1 of the usual unit, e.g. 0.1 μgal. Whatever unit is used, the amplitudes provided by the analysis are in unit 10 times greater, e.g. data in 0.1 mbars - amplitudes in mbars. However, one should take care the δ factors to be of the order of 1.

The effect of the units can be controlled using a multiplying constant SCALE (see Section II.3) as well as a multiplying constant (Sections II.2, 4). If the unit is 0.1, as said above, SCALE = 0.1. If, unit 0.01 is used, SCALE = 0.001. For unit 1, SCALE = 1, etc.

II.2. Control file (CFILE).

Every data file should be accompanied by a control file (CFILE). It is convenient but not necessary both files to have one and the same name, but different extensions, e.g. BRU3M.DAT with a CFILE BRU3M.TIT.

A CFILE can have the form exactly the same as the CFILES used in ICET and the program of Ducarme (1975). It is, however recommendable, to use CFILE in the particular form of NSV which is more comprehensive and flexible, and is allowing to give more information. NSV is automatically able to distinguish which form is used.

Example 2. A control file (CFILE)

```
INAME_STATION 3
NAME STATION 0201 BRUXELLES-UCCLE COMPOSANTE VERTICALE BELGIQUE
50 47 55 N 04 21 29 E H 101 M
GRAVIMETRE A SUPRACONDUCTIVITE GW T3
COMPONENT Gravimeter
LONGITUDE_WEST DEGREES -4.3581
LATITUDE_NORTH DEGREES 50.7986
ALTITUDE_KILOM 0.100
GRAVITY_GALS 981.0
*IAZIMUTH_FROM_N_CLOCKWISE 0.0
MULTIPLYING_CONSTANT 0.9907
TIME_CORRECTION SECONDS -30 seconds, negative = retardation.
NO INERT._CORRECTION_PARIISKII
END
```

A CFILE consists, as shown in Example 2, of some control words (CW) which have a "!" in the first column. In many cases, CW is followed by a corresponding information, distant from the CW by at least one blank. A CW can be abbreviated by the first letters, at least the first 3, e.g. !COMP instead of !COMPONENT.

The !NAME, !COMP, !LONG and !LAT are obligatory, while all other CW are optional. With the exception of !NAME, which is at the first place, the CW can be given in any order. Letters upper or lower case can be used. One can add any number of rows with comments, which should not begin by an ! in column 1. Thus *IAZIMUTH in Example 2 is like a comment. Comments can be written before or after the numerical data but separated by at least one blank, like (follow 3 lines with...). The last CW should be !END.

16
The CFILE in Example 3, with the exception of the shorter name, is equivalent to the CFILE in Example 2.

Example 3. CFILE equivalent to Example 1 (without !NAME).

!Name 1 (follows only 1 line)
STATION 0201 BRUXELLES-UCCLE COMPOSANTE VERTICALE BELGIQUE
 data, rearranged in comparison with Example 1:
 !Lat 50.7986 degress, north
 !Long -4.3581 degress, positive to the West
 !altitude 0.100 kilometers
 !Grav approximately 981.0 gals
 !COMPONENT Grav here only the first letter G is important
 *!AZIMUTH for gravity data is not necessary
 !Mult 0.9907
 !TIME corr. -30 seconds, negative = retardation.
 !NO_IN means NO_INERT._CORRECTION_PARIISKII
 !END

The information used after !COMP is only the first letter of the first word. It is possible to use (only the letters upper case are important):
 Gravimeter or Vertical component;
 Horizontal component, Tiltmeter or Clinometer
 Extenzometer horizontal
 Strainmeter vertical
 Ocean data, Air-pressure or temperature or Meteo data.

The cases O, A or M are processed using the theoretical tides of the static ocean tides.

There are a few more CW, some of which are:

!SEPARATED_POTENTIAL_3 see 2.6. (SEPP3)
!ADD_LUNISOL_WAVES_TAMURA see 1.1.1. (LUNISOL)
!ADD_VENUS/JUPITER_WAVES_TAMURA see 1.1.2. (VEN/JUP)
!THRESHOLD_AMPLITUDE 0.1 see 1.1.4. (MIN.AMPL)
!NO_CORRECTION_POTENTIAL_3 see 1.2.1. (NOCP3)
!LENGTH_INTERVALS 36 see 3.1. (NFINT)
!POWER_DRIFT_POLYNOMIALS 1 see 3.3. (KELIM)
!PRINT_ONLY_4_DECIMALS see 6.1. (OUT4)
!DELTA_KAPPA_CORRECTIONS see 6.3. (DKCORR)

A number is added after the CW which need a numerical information.
The effect of all these CW can be obtained using corresponding options in a dialogue (Section II.4), indicated here through "see ... ".
In the dialogue can be used a help, explaining the meaning of the options. E.g., if the question

6.3. (DKCORR) DELTA AND KAPPA CORRECTIONS ? h

gets the answer h, as above, the user will obtain the information how to create the input which should follow !DELTA_KAPPA_CORRECTIONS or !DEL.
II.3. Data bank.

It is supposed that the user disposes by several data files. It is also expected that these data files can be subject to multiple processing, i.e. they have to be at disposition for a while, if not forever. Therefore NSV is organizing a simple information system.

It is necessary to write the names of the data in one or more OPEN files. In Example 4 is given an OPEN file called OPENA.DAT, which is accompanying the PC version of NSV.

Example 4. File OPENA.DAT with names of the files at disposition

Data, prepared as example for the use of the program NSV:

BRUGM.TIT
BRUGM.DAT
5 0.1
AIR-PRESSURE, BRUSSELS, 3 MONTHS, 01.01.92-01.04.92

BRUGM.TIT
BRUGM.DAT
5 0.1
SUPRA, BRUSSELS, 3 MONTHS, 01.01.92-01.04.92

BRUGM.TIT
BRUGM.DAT
5 0.1
BRUSSELS, TEMPERATURE, 3.8 MONTHS, 01.01.92-30.04.92

DUMMY.TIT
DUMMY.DAT
5 0.1
Names of data which do not exist

In the first line should be written a common name of the data, like "Data prepared as ..." in Example 4. Then follow, separated by a blank line, the names of every file in 4 lines. Their content is:

Line 1: Name of the CFILE, e.g. BRUGM.TIT
Line 2: Name of the data file, e.g. BRUGM.DAT
Line 3: The numbers: NCOL and SCALE, e.g. 5 0.1 (Section II.1)
Line 4: A short name of the data, e.g. SUPRA, BRUSSELS, 3 MONTHS,...

Up to 20 data files can be described in OPENA.DAT. There can also be included dummy names.

It is possible to organize an arbitrary numbers of OPEN files, e.g. OPENA.DAT, OPENB.DAT, OPENC.DAT..., containing different sets of data. However, if a cross-regression will be used between some files, all of them should be written in one and the same OPEN file.

The names of the OPEN files should be written in the existing file OPENOPEN.DAT, e.g.

Example 5. OPENOPEN.DAT with the names of the OPEN files.

*This is the content of OPENOPEN.DAT
II.4. Start of the program NSV and a simple variant of analysis.

The work of the PC version of NSV is initiated by the command NS. At the beginning we get a message like

START OF THE PROGRAM NSV/1996 ON 25.06.1996 10h 26m 11.4sec
WITH WISHES FOR GOOD RESULTS FROM
VENEDEKOV, VIEIRA, DE TORO & ARNOSO FROM MADRID

Afterwards NSV is displaying the information from the OPEN files. If OPENA.DAT in Example 4 is used, this information will be:

DATA AT DISPOSITION:
FILE 11 BRU3MP.DAT AIR-PRESSURE, BRUSSELS, 3 MONTHS, 01.01.92-01.04.92
FILE 12 BRU3M.DAT SUPRA, BRUSSELS, 3 MONTHS, 01.01.92-01.04.92
FILE 13 BRU3MT.DAT BRUSSELS, TEMPERATURE, 3.8 MONTHS, 01.01.92-30.04.92
FILE 14 DUMMY.DAT Names of data which do not exist

Follows a message to choose the number of the data file to be processed. In this case it can be an integer between 11 and 13.

ENTER NR OF THE DATA FILE TO BE PROCESSED : 12

where "12" is the answer of the user.
If there is no answer (return key), NSV will display the information from the next OPEN file, e.g. OPENB.DAT, then the next one, OPENC.DAT, as many OPEN files as many names are given in OPENOPEN.DAT.
After the answer "12" follows a series of messages which do not need the intervention of the user.
The dialogue continues by getting the question:

0.0. SOME OPTIONS ?

If the answer is a blank (return), NSV proceeds the analysis using default values and options.

II.5. Options and questions.

NSV has a set of options. They are selected in a dialogue, during which NSV set up questions which have to be answered. The initial question has been given in Section II.4. If the answer is H or h (help), all questions are displayed. In Table I are given most of the questions. A few questions related with details of some options are not shown.
The answer of every question, written in the same line as the question, can be:
Y or y - accepted option,
H or h - NSV will provide explanations about the option,
Any other single letter is equivalent to Y or y
2 letters, e.g. CC, - brakes the dialogue, start of the processing. blank or RETURN key - rejected option. In the following this answer will be denoted RET.

The underlined questions in Table 1 are "main" questions. If the answer is RET, the control goes to the next main question. Also, if the answer is RET to 1.1. the next question is 1.2. If the answer is RET to 1.2. the next question is 2.0.

In all other cases RET makes appear the next question.
In any case after 4.0. follows 5.0. If the answer to 4.0. is "y", then 4.1. 4.2.... are displayed, but later, during the execution.
Under some conditions, some question are not displayed. If 5.1. or 5.2. are used, 4.1. is not displayed. If 4.1. is used, the execution is interrupted after terminating its function, thus 4.2., 4.3,... are not displayed.

Example 6. A dialogue with NSV:

0.0. SOME OPTIONS ? x
1.0. (CORR) SOME CORRECTIONS AND CHANGES ?
2.0. (ANAL) CHANGES IN THE ANALYSIS ?
3.0. (FIL) CHANGES IN THE FILTERS ? x
3.1. (NFINT) NEW LENGTH n OF THE FILTERED INTERVALS ? x
ENTER n (EVEN NUMBER.LE.800): 44
3.2. (SHIFT) NEW SHIFT s OF THE FILTERED INTERVALS ? x
ENTER s (ANY INTEGER): 60
3.3. (KELIM) NEW POWER k OF THE DRIFT POLYNOMIALS ? x
ENTER THE VALUE k 0
3.4. (TIDEF) NEW TIDAL CONSTITUENTS OF THE FILTERS ? ss
END OF THE CONTROL INPUT AND
START CONSTRUCTION OF THE FILTERS AT 12h 34m 18.8sec CPU TIME: 27.85
END CONSTRUCTION OF THE FILTERS AT 12h 34m 20.2sec CPU TIME: 29.22
START OF THE DATA PROCESSING, CPU TIME SET TO 0

In Example 6 "x" (meaning y or yes), "ss" (meaning start of the processing) and the numbers "44" (for n), "60" (for s) and "0" (for k) are input given by the user. The questions 1.0. and 2.0. have the negative answers RET. Therefore 1.1., 1.2., ..., 2.1., 2.2., ... are skipped.

The effect of this dialogue is that NSV will use filters of length n = 44, shifted by s = 60, i.e. omitting 16 ordinates between the intervals. The filter will eliminate power k = 0, i.e. only an arbitrary constant, different in every interval.

The processing has started after the answer "ss" with the message

END OF THE

II.6. Short comments of some options.

We think that the best and easiest way to understand the options is to use NSV, the explanations which can be displayed after an H or h and, most efficient, by making experiments. Therefore in the following we shall briefly concern only few options, which may be of greater interest.
1.1.3. (ADNW) ADDITIONAL WAVES?

ADNW makes possible to deal with some waves which are not included in the potential development. They can be added to one of the existing species, D, SD, ... or they can form a new species called AW. The waves can be defined either by a frequency (angular) or by an argument number of Doodson.

The option may be interesting for detection of particular tidal or non-tidal phenomena, as well as for including some particular waves which may exist in the ocean tidal phenomena.

2.1. (LONG) DETERMINATION OF THE LONG PERIOD (LP) WAVES?

It is possible to determine LP using large filters of default length $n = 360$ which, however, can be optionally modified.

A new option of SV is to determine LP in parallel with the D (option named LONG(D)) or SD (option named LONG(S)) species, using the useful filters of length of the order of $n = 48$. This option may be applied to obtain the drift free of LP. This will be shown later in an example.

2.2. (MAIN) MAIN TIDAL SPECIES TO BE DETERMINED, CHOOSE D, SD, ... ?

The default option of NSV is to determine the D, SD and TD waves. However, it is possible to determine also the species QD (quarter-diurnal, 4 cpd), FD (fifth-diurnal, 5 cpd) and D6 (sixth-diurnal, 6 cpd), as well as species defined by 1.1.3. (ADNW).

2.3. (WGHT) WEIGHTS OF THE FILTERED NUMBERS?

The $u(T), v(T)$ can be weighed by the estimated variances through the solution of (28). The option can be efficient in dealing with records having strong perturbations. If the use of this option improve considerably the results, it is possible that in the data are gross errors.

2.5. (ADDCR) ADDITIONAL TIDAL GROUPS FOR ELIMINATION OF A LEAKAGE?

Since nothing is perfect, the separation of the main species by the filters is also not perfect. This may have an effect only for data of very high precision, e.g. theoretical model data. This option can strongly reduce the leakage.

4.0. (TVAR) TIME VARIATIONS, RESIDUALS?

This set of options can be very useful for the detection of various anomalies in the data. Since such anomalies may be potential volcano and earthquake precursors, (TVAR) can be helpful for these fundamental problems.

Here we shall concern only some of these options.

4.1. (RESIN) RESIDUALS AND DRIFT IN THE FILTERED INTERVALS?
RESIN deal with the data separately in every interval \(I_i \), using the expressions (28) and (29)

\[
\begin{align*}
\text{expression} \hspace{1cm} & = \hspace{1cm} \text{expression} \\
(35) \hspace{1cm} & \hspace{1cm} Cx_i \hspace{1cm} = \hspace{1cm} y_i \hspace{1cm} \text{and} \hspace{1cm} \tilde{x}_i = (C^t C)^{-1} C^t y_i = F^t y_i
\end{align*}
\]

where \(F \) is the matrix of the filters. In (30) are indicated only the filters which are used for the tidal analysis. Here, in (35), take part all filters or vectors of the matrix \(F \).

The hourly residuals provided by RESIN are computed through

\[
(36) \hspace{1cm} r_i = y_i - C\tilde{x}_i
\]

These residuals are usually too small. However, big anomalies in single ordinates, e.g. gross errors, can be determined.

Some of the elements of the vector \(\tilde{x}_i \), are the estimates \(\tilde{\xi}_{i1} \) of the drift unknowns \(\xi_{i1} \) in (10) and (14). Using \(\tilde{\xi}_{i1} \) in (10), RESIN is computing the drift for all points in the intervals.

RESIN is not used, when TORO1 or TORO2 are applied.

If RESIN is used, the execution is terminated after its application.

4.2. (RESAN) HOURLY RESIDUALS AND DRIFT AFTER THE ANALYSIS?

RESAN provides hourly residuals, as well as the drift \(d_t \) in two variants: filtered \(d_t \) and residual \(d_t \) called also drift + noise. The residual \(d_t \) is obtained as the difference between the observations \(y(t) \) and the computed or adjusted tidal signal.

The filtered \(d_t \) is obtained through a moving filtration. The filter is not indicated in (30) but it is there. This is the first filter in the matrix \(F \), corresponding to the vector \(p_0 \). The filtered drift is actually the estimate \(\tilde{\xi}_o \) of the unknown \(\xi_o \) in (10) and (14), obtained hour by hour.

The filtered drift is a smoothed drift, its values \(d_t \) being strongly correlated. In our opinion, more information is provided by the residual drift.

The hourly residuals are obtained as the difference between \(y(t) \) and (estimated tidal signal + filtered \(d_t \)).

About other options related with the question 4.0. the user can find the information using the help option as well as through experimentation.

5.0. (CROSS) EFFECT OTHER SERIES (INPUT CHANNELS) OF DATA?

Very essential option through which the component \(a_t \) in (2) is modeled and eliminated (approximately, of course)

The use of this option depends on the questions:
5.1. (TORO1) REGRESSION MODEL 1 WITHOUT PHASE SHIFT?

5.2. (TORO2) REGRESSION MODEL 2 WITH PHASE SHIFT?

In principle the idea of De Meyer (1982) is used but through our model (Simon et al., 1989, Toro et al., 1991, 1993a). Now this is done in the following way.

Let FILE1 are some tidal data, while FILE2 are data of a phenomenon which is perturbing FILE1. E.g. FILE1 are the gravity data BRU3M.DAT and FILE2 are the air-pressure data BRU3MP.DAT.

Let $u(T)$ and $v(T)$ are filtered numbers obtained from FILE1, $p(T)$ and $q(T)$ are corresponding filtered numbers obtained from FILE2, \bar{p} and \bar{q} are the mean values of $p(T)$ and $q(T)$ and

\[
\Delta p(T) = p(T) - \bar{p},
\]
\[
\Delta q(T) = q(T) - \bar{q}.
\]

If MODEL 2 (TORO2) is accepted, the equations (33) are modified into

\[
\sum_{j=1}^{\mu} \left[c_{j_1}(T) \xi_j + s_{j_2}(T) \eta_j \right] + b_1 \Delta p(T) - b_2 \Delta q(T) = u(T)
\]
\[
\sum_{j=1}^{\mu} \left[-s_{j_3}(T) \xi_j + c_{j_4}(T) \eta_j \right] + b_1 \Delta q(T) + b_2 \Delta p(T) = v(T).
\]

Here b_1 and b_2 are regression coefficients which can be represented as

\[
b_1 = b \cos \beta, \quad b_2 = b \sin \beta,
\]

where b is a coefficient of proportionality and β is a phase lag of the effect of FILE2 on FILE1.

We get b_1 and b_2, b and β separately for the main species, i.e. NSV is looking for frequency dependent relations.

If MODEL 1 it applied, it is accepted that $\beta = 0$ and we get only one regression coefficient $b_1 = b$.

It is possible to deal at once with 6 files like FILE2, i.e. in (38) to put 6 pairs of unknowns b_1 and b_2. However, it is very unlikely to be successful if more than two files FILE2 are considered.

5.3. (CROSSC) CORRECTING CROSS REGRESSION COEFFICIENTS?

If neither 5.1 nor 5.2 is used, CROSSC can correct the filtered number using given regression coefficient b, common for all frequencies. The corrections to $u(T)$ and $v(T)$ are $bp(T)$ and $bq(T)$ respectively. Notice that here are used $p(T)$ and $q(T)$, instead of $\Delta p(T)$ and $\Delta q(T)$.
II.7. A few examples.

7.1. Options SLOW and TORO1.

Table 2 is a copy of the output provided by NSV. B1 are values of the coefficients \(b_1 \) in (9). We have got B1 frequency and time depending.

We have an application of SLOW with intervals of length 30 days and shifted by 30 days. The last interval has 46 days because there are left 16 days of data which cannot shape an interval of the selected length.

The output using this option as well as the output of all options for time variations is in a form suitable to use a plotting program. Therefore the dates are written in a not very convenient form.

In addition to this output we get the values of \(\delta \) and \(\kappa \) for selected tides for the same time intervals and similar format.

7.2. Options LONG, TORO1, TORO2 and VGR.

In Table 3 we have variants of the results of the analysis about the long period waves. In the title is given part of the output when only one of the variants is applied.

When VGR is not applied, the tidal group called MF unify all LP tides. However, the filters which amplifies MF, are retaining or eliminating the longer tides, e.g. SSA and SA.

When VGR is applied, we have the variants

VGR(MTM): the LP tides are separated in groups MF and MTM
VGR(MTM, MSOM): the LP tides are separated in groups MF, MTM and MSOM.

However, in Table 3 are given only the results for MF.

This example has needed a preparation of the file NGROUPS.DAT, where the groups used MF, MTM and MSOM are defined through intervals of the frequency \(\omega \).

Table 3 is also an example how the criterion AIC can be used. We have an important reduction of AIC at the first step LONG \(\rightarrow \) (LONG, TORO1). Further we have not any improvement, even AIC is slightly raising. We have to remain at the lowest value, i.e. to accept the result (LONG, TORO1).

7.3. Option LONG(D), TORO1 and RESAN.

Let a filtered or residual \(d_t \) is determined using RESAN. In both cases, if CROSS is used, taking into account the air-pressure (AP), the estimated effect is subtracted from \(d_t \).

If CROSS is not used, \(d_t \) remains charged by the effect of AP.

Also, if LONG is used, but only the variants LONG(D) or LONG(S), the estimated LP are subtracted from \(d_t \).

In Figures 6, 7 and 8 are given examples of the determination of the drift.

More evident are the effects at the data of the superconducting gravimeter in Figure 6. RESAN provides a drift charged by the effect of the air-pressure where the most important signal is the LP tides. One can very distinguish the monthly and halfmonthly period.
The application of TORO1 eliminates quite well the effect of the air-pressure and the manifestation of the LP waves becomes completely clear.

At the end, through LONG(D) the LP are determined and thus eliminated. We get a drift in which we can look for some geophysical phenomena.

In Figures 7 and 8 the procedures are repeated for ocean data. We have similar effects as in Figure 6, but not so strong.

In Figure 6 we use a filtered d_t. We get data looking less noisy but, due to the smoothing, there are some small waves.

7.4. Options RESFN and TORO1.

In Figure 9 are given the D residuals of the filtered numbers, obtained using RESFN. The same residuals are computed after TORO1 is proceeding a regression on air pressure data. Obviously, there is a considerable reduction of the magnitude of the residuals.

However, the effect is not so strong for the SD residuals.

7.5. Option SLOW.

In Figure 10 is shown an example of the study of the slow time variation of the tidal parameters. SLOW can represent the δ factors of one wave as a function of the δ factor of another wave. If there is a correlation, this can be explained by a variation of the sensibility. This effect is well demonstrated in Figure 10.

7.6. Estimation of the precision by NSV using model data of the noise.

In principle, the reasonable estimation of the noise made by NSV is one of its most important properties.

Let V be the covariance matrix of the data $y(t)$ and $V = T^*T$, where T is an upper triangular matrix, and let y denotes the vector whose elements are all $y(t)$. According to the theory, we would have a correct application of MLS, if we work with the transformed data $u = T^*y$, instead of y. The reason of the transformation is that the noise of u becomes WN.

Since V is not available, NSV applies the transformation of y in our filtered numbers u and v. This is done under the supposition that u and v are also charged by a WN.

In Figure 11 is represented a simulated white noise. Its spectrum is representing the effect of the noise in the frequency domain. About the spectrum is used such a scale, that the level of the noise should be of the same order as the standard (the square root of the variance) of the simulated noise.

The spectrum obtained is according to the theoretical level of the noise which is the constant $L_w = \sigma = 1$ over the whole frequency domain.

In Figure 12 are shown the D and SD filtered numbers u. They obviously behave as a WN. NSV is applying filters, normalized in such a way that in the case of WN, u and v should have the same variance as the data. Indeed, the level of the spectrum of u in Figure 12 is
corresponding to $\sigma = 1$.

In Figure 13 is shown a simulated stationary noise obtained as an MA (moving average) of the white noise. Unlike the WN, the spectrum is showing an accumulation of the energy at the D and SD domains, corresponding to the theoretically determined level of the noise. We have, more or less, similar picture of the real noise of the tidal data, mainly due to the meteorological effects in which are some variable D and SD waves.

As shown in Figure 14, the filtered numbers behave as a WN because the spectrum is maintaining a constant level. However, we have a higher level for the D filtered numbers and lower level for the SD filtered numbers, which is realistically corresponding to the spectrum of Figure 13.

In Table 4 are given the results of the estimation of the noise through ETERNA and NSV, using different filters.

7.6. Analysis results.

Table 5 is a copy, with very few modifications, of the analysis of the data file 12, BRU3M.DAT. There is applied a cross-regression with the air-pressure data, BRU3MP.DAT

Acknowledgments.

In the first applications abroad (out of Madrid) of NSV we have been helped by the staff of ICET and the Belgian Royal Observatory, in particular by Prof. Melchior, Prof. P. Pâquet and Dr. B. Ducarme. Dr. Ducarme has taken part in a stage of development of the program.

One of the authors (Venedikov) has been helped to stay and work in Madrid by the Sabatical Program of the University Complutense and the Superior Council for Scientific Investigations of Spain. He was also supported by several contracts with C.S.I.C.

REFERENCES

(BIM = Bulletin d’Information des Marees Terrestres, editeur P.Melchior)
Carvajal, J.M., 1993: Modelización de las mareas oceánicas y estudio de las variaciones del nivel medio del mar en los puertos de Gijón y Santander, Tesis doctoral, Universidad de Oviedo.
Chojnicki, T., 1978: Supplementary precision estimation of results of tidal data adjustment, BIM 78, 4670-4675.
Ducarme, B., 1975: The computation procedures at the International Center for Earth tides (ICET), BIM 72, 4156-4181.
Física de la Tierra, Num. 5, Editorial Complutense, Madrid, 77-88.
Horn, W., 1959: The harmonic analysis, according to the least square rule, of tide observations upon which an unknown drift is superposed, Third Int. Symp. Earth Tides, Trieste, p. 218.
Schüller, K., 1977, Tidal analysis by the Hybrid Least Squares frequency domain convolution method, 8th Int. Symp. Earth Tides, Bonn.
Schüller, K., 1978: About the sensitivity of the Venedikov tidal parameter estimates to leakage effects. BIM 78, 4635-4648.

Venedikov, A. P., 1979: Testing of the grouping of the waves in the analysis of the Earth tidal records. BIM 81, 4968-4998.

Venedikov, A. P., Ducarme, B., 1979: Determination of the long period tidal waves. BIM 81, 5051-5059.

Table 1. List of the questions/options of NSV.

1.0. (CORR) SOME CORRECTIONS AND CHANGES?

1.1. (THEOW) THEORETICAL WAVES (TIDAL POT. DEVELOPMENT)?
1.1.1. (LUNISOL) ADDITIONAL LUNI-SOLAR TERMS OF TAMURA?
1.1.2. (VEN/JUP) TIDAL WAVES OF VENUS AND JUPITER?
1.1.3. (ADDW) ADDITIONAL WAVES?
1.1.4. (MIN. AMPL.) IGNORE WAVES UNDER A THRESHOLD AMPLITUDE?
1.1.5. (PRDEV) PRINT THE TIDAL POTENTIAL DEVELOPMENT?
1.2. (DATA) DATA CORRECTIONS?
1.2.1. (NOCN3) NO CORRECTIONS FOR POTENTIAL OF ORDER 3 AND 4?
1.2.2. (NOINC) NO CORRECTION PARIISKII (ONLY GRAVIMETERS)?
1.2.3. (SECCOR) TIME CORRECTION IN SECONDS?
1.2.4. (MULT) MULTIPLYING CORRECTION?
1.2.5. (CUT) RESTRICT (CUT OFF) THE INTERVAL OF THE DATA?
1.2.6. (ADJUST) ADJUST THE VOLUME OF THE DATA TO OTHER SERIES?

2.0. (ANAL) CHANGES IN THE ANALYSIS?

2.1. (LONG) DETERMINATION OF THE LONG PERIOD (LP) WAVES?
2.2. (MAIN) MAIN TIDAL SPECIES TO BE DETERMINED, CHOOSE D, SD, ...?
2.3. (WGHIT) WEIGHTS OF THE FILTERED NUMBERS?
2.4. (VGR) CHOOSE THE VARIANT OF GROUPING?
2.5. (ADDGR) ADDITIONAL TIDAL GROUPS FOR ELIMINATION OF A LEAKAGE?
2.6. (SEP3) SEPARATE THE TIDES OF DEGREE 3?

3.0. (FIL) CHANGES IN THE FILTERS?

3.1. (NFINT) NEW LENGTH n OF THE FILTERED INTERVALS?
3.2. (SHIFT) NEW SHIFT s OF THE FILTERED INTERVALS?
3.3. (KEIM) NEW POWER k OF THE DRIFT POLYNOMIALS?
3.4. (TIDEF) NEW TIDAL CONSTITUENTS OF THE FILTERS?
3.5. (RESPF) RESPONSE OF THE FILTERS TO SOME TIDES?
3.6. (SPECF) SPECTRUM OF THE FILTERS?

4.0. (TVAR) TIME VARIATIONS, RESIDUALS?

4.1. (RESIN) RESIDUALS AND DRIFT IN THE FILTERED INTERVALS?
4.2. (RESAN) HOURLY RESIDUALS AND DRIFT AFTER THE ANALYSIS?
4.3. (FAST) FAST AMPLITUDE AND PHASE VARIATIONS?
4.4. (RESTN) RESIDUALS OF THE FILTERED NUMBERS?
4.5. (FILN) PRINT THE FILTERED NUMBERS?
4.6. (SLOW) SLOW AMPLITUDE AND PHASE VARIATIONS?

5.0. (CROSS) EFFECT OTHER SERIES (INPUT CHANNELS) OF DATA?

5.1. (TORO1) REGRESSION MODEL 1 WITHOUT PHASE SHIFT?
5.2. (TORO2) REGRESSION MODEL 2 WITH PHASE SHIFT?
5.3. (CROSSC) CORRECTING CROSS REGRESSION COEFFICIENTS?

6.0. (OTHER) OTHER OPTIONS?

6.1. (OUT4) OUTPUT WITH ONLY 4 DECIMALS OF DELTA?
6.2. (ARTW) ADD AN ARTIFICIAL WAVE?
6.3. (DKCORR) DELTA AND KAPPA CORRECTIONS?
Table 2. Output when the options SLOW and TOR01 are applied.
Data used: Station Brussels, Superconducting gravimeter.

TIME VARIATIONS OF THE REGRESSION COEFFICIENTS

<table>
<thead>
<tr>
<th>NR</th>
<th>INTERVAL FROM</th>
<th>INTERVAL TILL</th>
<th>CENTRAL EPOCH DAYS</th>
<th>DATA USED DAYS</th>
<th>B1(D)</th>
<th>B1(SD)</th>
<th>B1(TD)</th>
<th>B1(QD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86111500</td>
<td>86121423</td>
<td>15.0</td>
<td>30.0</td>
<td>-0.325</td>
<td>-0.421</td>
<td>-0.359</td>
<td>-0.075</td>
</tr>
<tr>
<td>2</td>
<td>86121500</td>
<td>87011323</td>
<td>45.0</td>
<td>30.0</td>
<td>-0.354</td>
<td>-0.351</td>
<td>-0.441</td>
<td>-0.237</td>
</tr>
<tr>
<td>3</td>
<td>87011400</td>
<td>87021223</td>
<td>75.0</td>
<td>30.0</td>
<td>-0.458</td>
<td>-0.214</td>
<td>-0.223</td>
<td>-0.075</td>
</tr>
<tr>
<td>4</td>
<td>87021300</td>
<td>87031423</td>
<td>105.0</td>
<td>30.0</td>
<td>-0.378</td>
<td>-0.463</td>
<td>-0.508</td>
<td>0.017</td>
</tr>
<tr>
<td>5</td>
<td>87031500</td>
<td>87041323</td>
<td>135.0</td>
<td>30.0</td>
<td>-0.377</td>
<td>-0.241</td>
<td>-0.428</td>
<td>-0.733</td>
</tr>
<tr>
<td>6</td>
<td>87041400</td>
<td>87051323</td>
<td>165.0</td>
<td>30.0</td>
<td>-0.351</td>
<td>-0.298</td>
<td>-0.692</td>
<td>0.048</td>
</tr>
<tr>
<td>7</td>
<td>87051400</td>
<td>87061223</td>
<td>195.0</td>
<td>30.0</td>
<td>-0.444</td>
<td>-0.395</td>
<td>-0.228</td>
<td>-0.310</td>
</tr>
<tr>
<td>8</td>
<td>87061300</td>
<td>87071223</td>
<td>225.0</td>
<td>30.0</td>
<td>-0.309</td>
<td>0.012</td>
<td>-0.099</td>
<td>-0.441</td>
</tr>
<tr>
<td>9</td>
<td>87071300</td>
<td>87081123</td>
<td>255.0</td>
<td>30.0</td>
<td>-0.344</td>
<td>-0.435</td>
<td>-0.228</td>
<td>-0.223</td>
</tr>
<tr>
<td>10</td>
<td>87081200</td>
<td>87091023</td>
<td>285.0</td>
<td>30.0</td>
<td>-0.313</td>
<td>-0.188</td>
<td>-0.183</td>
<td>-0.040</td>
</tr>
<tr>
<td>11</td>
<td>87091100</td>
<td>87101023</td>
<td>315.0</td>
<td>30.0</td>
<td>-0.342</td>
<td>-0.289</td>
<td>-0.298</td>
<td>-0.320</td>
</tr>
<tr>
<td>12</td>
<td>87101100</td>
<td>87112523</td>
<td>353.0</td>
<td>46.0</td>
<td>-0.350</td>
<td>-0.418</td>
<td>-0.330</td>
<td>-0.304</td>
</tr>
</tbody>
</table>

Table 3. Application of the options LONG, TOR01, TOR02 and VGR.
Data: Station Brussels, Superconducting gravimeter, 21.04.82-20.01.93.
and air-pressure for the same interval.

FILTERED INTERVALS OF LENGTH 360 HOURS

SHIFT (DISTANCE BETWEEN THE EPOCHS) OF THE INTERVALS 360 HOURS

APPROXIMATION IN THE INTERVALS BY DRIFT POLYNOMIALS OF POWER 1 AND TIDES: MF S1 O1 Q1 S2 M2 N2 S3

DATA USED: 3927 DAYS, 92520 READINGS, 3 BLOCKS, 257 INTERVALS

82.04.21.00/82.06.09.11 82.06.02.00/86.10.29.23 86.11.15.00/93.01.19.23

<table>
<thead>
<tr>
<th>Options used</th>
<th>(\delta(\text{MF}))</th>
<th>(\sigma(\delta))</th>
<th>(\kappa(\text{MF}))</th>
<th>(\sigma(\kappa))</th>
<th>(\sigma(y))</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONG</td>
<td>1.1463</td>
<td>0.0163</td>
<td>1.262</td>
<td>0.811</td>
<td>21.00</td>
<td>4594.</td>
</tr>
<tr>
<td>LONG, TOR01</td>
<td>1.1483</td>
<td>0.0046</td>
<td>0.007</td>
<td>0.231</td>
<td>5.98</td>
<td>3305.</td>
</tr>
<tr>
<td>LONG, TOR01, VGR(MTM)</td>
<td>1.1467</td>
<td>0.0047</td>
<td>0.016</td>
<td>0.234</td>
<td>5.96</td>
<td>3307.</td>
</tr>
<tr>
<td>LONG, TOR02</td>
<td>1.1482</td>
<td>0.0046</td>
<td>0.006</td>
<td>0.231</td>
<td>5.98</td>
<td>3308.</td>
</tr>
<tr>
<td>LONG, TOR02, VGR(MTM)</td>
<td>1.1466</td>
<td>0.0047</td>
<td>0.014</td>
<td>0.234</td>
<td>5.97</td>
<td>3309.</td>
</tr>
<tr>
<td>LONG, TOR01, VGR(MTM, MSOM)</td>
<td>1.1467</td>
<td>0.0047</td>
<td>0.009</td>
<td>0.234</td>
<td>5.97</td>
<td>3312.</td>
</tr>
</tbody>
</table>

30
Table 4. Estimation of the precision using models of the noise.

Estimation of the precision of the white noise in Figure 11

<table>
<thead>
<tr>
<th>Tidal species :</th>
<th>D</th>
<th>SD</th>
<th>TD</th>
<th>QD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical level of the noise</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programs</th>
<th>variants</th>
<th>Mean Square Deviations MSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETERNA</td>
<td>ET49</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>ET51</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>ET239</td>
<td>1.03</td>
</tr>
<tr>
<td>NSV</td>
<td>V48</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>V36</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>V40</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>V44</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>V52</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Estimation of the precision of the stationary noise in Figure 13

<table>
<thead>
<tr>
<th>Tidal species :</th>
<th>D</th>
<th>SD</th>
<th>TD</th>
<th>QD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical level of the noise</td>
<td>3.08-3.99</td>
<td>0.93-1.81</td>
<td>0.65-0.84</td>
<td>0.47-0.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programs</th>
<th>variants</th>
<th>Mean Square Deviations MSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETERNA</td>
<td>ET49</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td>ET51</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td>ET239</td>
<td>3.86</td>
</tr>
<tr>
<td>NSV</td>
<td>V48</td>
<td>3.30</td>
</tr>
<tr>
<td></td>
<td>V36</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>V40</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>V44</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>V52</td>
<td>3.35</td>
</tr>
</tbody>
</table>

ETn means filters of ETERNA of length n.
Vn means filters of NSV of length n.
START OF THE PROGRAM NSV/1996 ON 28.06.1996 14h 16m 39.0sec
WITH WISHES FOR GOOD RESULTS FROM
VENEDIKOV, VIEIRA, DE TORO & ARNOSO FROM MADRID
DATA AT DISPOSITION:
FILE 11 BRU3MP.DAT AIR-PRESSURE, BRUSSELS, 3 MONTHS, 01.01.92-01.04.92
FILE 12 BRU3M.DAT SUPRA, BRUSSELS, 3 MONTHS, 01.01.92-01.04.92
FILE 13 BRU3MT.DAT BRUSSELS, TEMPERATURE, 3.3 MONTHS, 01.01.92-30.04.92
FILE 14 DUMMY.DAT Names of data which do not exist
THE DATA FILE TO BE PROCESSED IS
FILE 12 BRU3M.DAT SUPRA, BRUSSELS, 3 MONTHS, 01.01.92-01.04.92
END READING DATA IN NDTF. FOR FROM FILE 12
DATA INTERVAL: 92.01.01.00. - 92.04.01.12.
NUMBER DATA 2208 NUMBER BLOCKS, 1
START READING DATA FROM CONTROL INPUT FILE 72
INFORMATION FROM THE CONTROL DATA FILE:
!NAME 3
!Comp
!Longitude.WEST.Degrees -4.3581
!Latitude.NORTH.Degrees 50.7986
!Altitude.KILOM. 0.100
!Gravity.GALS.OR.ZERO 981.0
!Multiplying_constant 0.9907
!Time -30
!No_inert.correction.PARISKII
0.0. SOME OPTIONS? Y
5.0. (CROSS) EFFECT OTHER SERIES (INPUT CHANNELS) OF DATA? Y
5.1. (TORO1) REGRESSION MODEL 1 WITHOUT PHASE SHIFT? Y
ENTER NUMBER(S) OF FILE(S)=2nd, 3rd...7th CHANNEL
IN ONE ROW: 11.
THE SECOND... DATA FILE TO BE PROCESSED IS
FILE 11 BRU3MP.DAT AIR-PRESSURE, BRUSSELS, 3 MONTHS, 01.01.92-01.04.92
END READING DATA IN NDTF. FOR FROM FILE 11
DATA INTERVAL: 92.01.01.00. - 92.04.01.12.
NUMBER DATA 2208 NUMBER BLOCKS, 1
END OF THE CONTROL INPUT AND
START CONSTRUCTION OF THE FILTERS AT 14h 17m 10.1sec CPU TIME: 31.08
END CONSTRUCTION OF THE FILTERS AT 14h 17m 11.1sec CPU TIME: 32.62
START OF THE DATA PROCESSING, CPU TIME SET TO 0
DATA FILE 12:
BRU3M.DAT
SUPRA, BRUSSELS, 3 MONTHS, 01.01.92-01.04.92
PROCESSING THE DATA, BE SO KIND TO WAIT....
END OF THE DIRECT PROCESSING, I.E. END FILTRATION,
CREATION OF MODEL EQUATIONS AND NORMAL EQUATIONS;
FOLLOWS: RESOLUTION OF THE NORMAL EQUATIONS AND OUTPUT

STATION 0201 BRUXELLES-UCCLE COMPOSANTE VERTICALE
50 47 55 N 04 21 29 E H 101 M P 4M D 90KM 981 117 301
GRAVIMETRE A SUPRACONDUCTIVITE GWR T3
LEAST SQUARE ANALYSIS OF INDEPENDENT FILTERED NUMBERS (VENEDIKOV/MV66)
PROGRAM NSV, VERSION 20.06.1996 FOR PC 486/UNIVERSITY COMPLUTENSE
PROGRAMMING VENEDIKOV, VIEIRA, DE TORO, ARNOSO,
INSTITUTO DE ASTRONOMIA Y GEODESIA, C.S.I.C.U.C.M, MADRID

FILTERED INTERVALS OF LENGTH 48 HOURS
SHIFT (DISTANCE BETWEEN THE EPOCHS) OF THE INTERVALS 48 HOURS
APPROXIMATION IN THE INTERVALS BY DRIFT POLYNOMIALS OF POWER 2
AND TIDES: S1 O1 S2 M2 S3 S4 S5 S6
TIDAL POTENTIAL DEVELOPMENT OF TAMURA
THEORETICAL ELEMENTS OF THE TIDES COMPUTED AFTER TAMURA
TIME CORRECTION -30.0 SECONDS
ANALYSIS ON 28.06.1996. START: 14h 17m 11.6sec. END: 14h 17m 13.2sec
CPU TIME USED: 1.60 SEC. FOR DATA OF LENGTH .25 YEARS
DATA USED: 91 DAYS, 2208 READINGS, 1 BLOCKS, 46 INTERVALS
REGRESSION MODEL 1 OF DE TORO, VENEDIKOV, VIEIRA
CROSS-REGRESSION, ADDITIONAL CHANNELS (INDEPENDENT VARIABLES):
DATA FILE 11:
BRU3MP.DAT
AIR-PRESSURE, BRUSSELS, 3 MONTHS, 01.01.92-01.04.92
THEORETICAL MODULATION OF THE D AND SD WAVES OF ORDER 3
THE INERTIAL CORRECTION (PARIISKII) IS "NOT" INTRODUCED
THE DATA ARE MULTIPLIED BY : 9907
92.01.01.00/92.04.01.23

<table>
<thead>
<tr>
<th>WAVE GROUP</th>
<th>ESTIMATED ARGUM.</th>
<th>WAVE</th>
<th>AMPL.</th>
<th>M.S.D.</th>
<th>FACTOR</th>
<th>M.S.D.</th>
<th>PHASE DIFF.</th>
<th>M.S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGRESSION ON CHANNEL-FILE 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1(D) REGRESSION COEFFICIENT = -.3336, MS ERROR= .0147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189-13X 143 O1</td>
<td>7.038 .017</td>
<td>1.14022 .00280</td>
<td>-.0972 .1427</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-149 58 O1</td>
<td>35.400 .019</td>
<td>1.14266 .00061</td>
<td>.0509 .0305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152-158 48 NO1</td>
<td>3.097 .017</td>
<td>1.13067 .00634</td>
<td>.6312 .3213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160-169 56 K1</td>
<td>51.497 .020</td>
<td>1.13213 .00044</td>
<td>.1838 .0222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171-177 40 J1</td>
<td>2.868 .016</td>
<td>1.14683 .00631</td>
<td>-.0848 .3099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181-173 105 CO1</td>
<td>1.918 .018</td>
<td>1.15473 .01076</td>
<td>-.2668 .5200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| REGRESSION ON CHANNEL-FILE 11 |
| B1(SD) REGRESSION COEFFICIENT = -.2920, MS ERROR= .0378 |
247-23X 99 2N2	1.395 .007	1.13470 .00534	4.1523 .2686
242-249 50 N2	6.764 .007	1.15039 .00125	3.0903 .0608
252-259 56 M2	35.267 .008	1.17388 .00027	2.7392 .0130
261-268 39 L2	1.175 .012	1.13667 .01201	5.4301 .6248
270-213 133 S2	17.302 .007	1.18950 .00048	1.3055 .0221

| REGRESSION ON CHANNEL-FILE 11 |
| B1(TD) REGRESSION COEFFICIENT = -.3846, MS ERROR= .0499 |
| 315-375 68 M3 | .427 .005 | 1.08662 .01299 | -.1729 .6844 |
| 382-3X5 14 S3 | .010 .004 | 2.29255 .94942 | -88.0543 .25.3928 |

| STANDARD DEVIATIONS: D .549 SD .225 TD .147 |
| AIC (AKAIKE): D 179. SD 11. TD -79. |

END OF THE PROCESSING 28.06.1996, 14h 17m 13.3sec CPU TIME 1.71 SEC.
Figure 1. Theoretical tidal amplitude spectrum H_ω. tidal gravity station Brussels. Development of the tidal potential of Tamura.
\[\mu \text{gals} \]

Tidal gravity observations, Cueva de los Verdes, Lanzarote, gravim. LCR 434/G, 1.03.91/11.05.91

Drift polynomial (thick line) of power 17 defined by AIC

\[\mu \text{gals} \]

Hourly residuals (drift and tidal signal subtracted)

Figure 2. Approximation of the drift using a polynomial for an interval of 2 months.
Figure 3. Drift approximated by polynomials in independent intervals of $n = 48$ hours.
NSV, even D filter (thick line), $RSTN = 0.802$ and $FFIL (2/n) \cos 15^\circ \tau$, $RSTN = 1.000$

NSV, odd D filter (thick line), $RSTN = 0.802$ and $FFIL (2/n) \sin 15^\circ \tau$, $RSTN = 1.000$

NSV, even SD filter (thick line), $RSTN = 0.745$ and $FFIL (2/n) \cos 30^\circ \tau$, $RSTN = 1.000$

NSV, odd SD filter (thick line), $RSTN = 0.813$ and $FFIL (2/n) \sin 30^\circ \tau$, $RSTN = 1.000$

Figure 4. Default filters of NSV and Fourier filters FFIL in the time domain, $n = 48$.
Even D filter of NSV (thick line), corresponding FFIL and Pertsev (dotted line)

Even SD filter of NSV (thick line), corresponding FFIL and Pertsev (dotted line)

Figure 5. Filters of NSV, FFIL and Pertsev (high pass) in the frequency domain.
Figure 6. Determinations of the drift using the program NSV on data of Supra/Brussels
Figure 7. Determinations of the mean sea level using the program NSV on ocean data/Lanzarote.
Figure 8. Determinations of the mean sea level using the program NSV on ocean data/Lanzarote.
Figure 9. Study of the effect of the air pressure, options RESFN and TORO1 of NSV.
Data from superconducting gravimeter, Brussels, 15.11.1986-15.11.1987
Figure 10. Program NSV, option SLOW, intervals of length 30 days without overlapping.
Station Lanzarote, gravimeter LCR G434/D, 14.05.87-13.06.1991
Sample of a simulated Gaussian white noise x_t with $\text{Var}(x) = \sigma^2 = 1$, first 400 of $n = 18000$ points.

Energy spectrum of x_t or observed level of the noise represented by S_ω

Theoretical level of the noise $L_\omega = \sigma = 1$

Figure 11. Gaussian white noise in time (x_t) and frequency domain (S_ω).

$S_\omega = (n/2) p_\omega = (n/4) h_\omega^2$ where p_ω is power and h_ω is amplitude at frequency ω.

Mathematical expectation $E(S_\omega) = L_\omega^2 = \sigma^2 = 1$
Figure 12. Analysis of simulated white noise x, by the program NSV.
Sample of Gaussian correlated stationary noise z, $\text{Var}(z) = \sigma^2 = 1$, first 400 of $n = 17952$ points. z is simulated as MA process, using the WN data of Figure 11.

Energy spectrum or observed level of the noise represented by S_ω

Theoretical level of the noise $= L_\omega$, varying with ω

Figure 13 Simulated stationary noise in time (z) and frequency (S_ω) domain. Mathematical expectation $E(S_\omega^2) = L_{\omega}^2$.
Figure 14. Analysis of simulated correlated noise z_i by the program NSV.
1. Efemérides de 63 Asteroides para la oposición de 1950 (1949).
2. E. Pájares: Sobre el cálculo gráfico de valores medios (1949).
16. B. Rodríguez-Salinas: Sobre varias formas de proceder en la determinación de períodos de las marcas y predicción de las mismas en un cierto lugar (1952).
17. R. Carrasco y M. Pascual: Rectificación de la órbita del Asteroide 1528 “Conrada” (1953).
22. S. Arend: Los polinomios ortogonales y su aplicación en la representación matemática de fenómenos experimentales (1953).
34. D. Calvo: Rectificación de la órbita del Asteroide 1466 “Mündleira” (1956).
36.—J. Pensado: Distribución de las inclinaciones y de los polos de las órbitas de las estrellas dobles visuales (1956).
42.—F. Martín Asín: Un estudio estadístico sobre las coordenadas de los vértices de la triangulación de primer orden española (1958).
49.—E. Pajares: Sobre el mecanismo diferencial de un celéstata (1960).
50.—J. M. González-Abín: Sobre la diferencia entre los radios vectores del elipsóide internacional y el esferoide de nivel (1960).
51.—J. M. Torroja: Resultado de las observaciones del paso de Mercurio por delante del disco solar del 7 de noviembre de 1960 efectuadas en los observatorios españoles (1961).
52.—F. Múgica: Determinación de la latitud por el método de los verticales simétricos (1961).
54.—F. Múgica: Determinación simultánea e independiente de la latitud y longitud mediante verticales simétricos (1962).
57.—F. Martín Asín: Nueva aportación al estudio de la red geodésica de primer orden española y su comparación con la red compensada del sistema europeo (1966).
59.—J. M. González-Abín: Variaciones de la coordenadas geodésicas de los vértices de una red, por cambio de elipsóide de referencia (1966).
60.—F. Sánchez Martínez y R. Dumont: Fotometría absoluta de la raya verde y del continuo atmosférico en el Observatorio Astronómico del Teide (Tenerife), de enero de 1964 a julio de 1965 (1967).
67.—Manuel E. Rego: Determinación de las abundancias de los elementos en la atmósfera de la estrella de alta velocidad 31 Aql (1970).
71.—I. M. TORROJA: Memoria de las actividades del Seminario de Astronomía y Geodesia de la Universidad Complutense de Madrid en 1971 (1972).
72.—M. J. FERNÁNDEZ-FIGUEROA: Observación y estudio teórico del espectro de la estrella peculiar HD 18474 (1972).
73.—M. J. SEVILLA: Cálculo de las constantes de distorsión y parámetros del disco obturador para cámaras balísticas (1973).
74.—R. PARRA y M. J. SEVILLA: Cálculo de efemérides y previsiones de pasos de satélites geodésicos (1973).
75.—M. REGO y M. J. FERNÁNDEZ-FIGUEROA: Resultado de las observaciones de α Peg efectuadas desde el satélite europeo TDI (1973).
76.—E. SIMONEAU: Problemas en la determinación de abundancias de elementos en las estrellas en condiciones de equilibrio termodinámico local y alejadas del equilibrio termodinámico local (1974).
77.—J. ARANDA: Construcción de modelos de estructura interna para estrellas en la secuencia principal inicial (1974).
79.—M. J. SEVILLA: Método autocorrector para el cálculo de direcciones de satélites geodésicos y análisis de los errores en la restauración de un arco de órbita (1974).
80.—M. A. ACOSTA, R. ORTIZ y R. VIEIRA: Diseño y construcción de un fotómetro fotoelectrónico para la observación de ocultaciones de estrellas por la Luna (1974).
82.—R. ORTIZ y R. VIEIRA: Control automático en posición y tiempo de los sistemas de obturación de las cámaras de observación de satélites geodésicos (1974).
84.—M. J. FERNÁNDEZ-FIGUEROA y M. REGO: α CrB en el ultravioleta lejano (1975).
87.—P. KUNDANMAL SIKHWANI: Modelos teóricos de curvas de luz. Su aplicación al sistema β Lyrae (1975).
90.—M. J. SEVILLA: Nuevos coeficientes para la reducción automática de posiciones de estrellas (1976).
91.—M. REGO: Técnicas observacionales en espectroscopía astrofísica (1976).
92.—M. J. SEVILLA: Determinación de la latitud por distancias cenitales de la polar, método de Littrow (1976).
93.—T. J. VIVES: Determinación fotómétrica del tipo espectral de la componente desconocida de una estrella binaria eclipantse (1976).
94.—M. REGO y M. J. FERNÁNDEZ-FIGUEROA: Contraste y determinación por métodos astrofísicos de fuerzas de oscilador (1977).
95.—M. J. SEVILLA y R. CHUECA: Determinación de acimutes por observación de la Polar Método micrométrico (1977).
100.—PREM K. SIKHWANI y RICARDO VIEIRA: Three different methods for taking in account the gaps in spectral analysis of Earth Tides records (1978).
103.—M. J. Sevilla y A. Núñez: Determinación de la latitud por el método de Sterneck. Programas de cálculo automático (1979).
104.—M. J. Sevilla: Determinación de la latitud y la longitud por el método de alturas iguales. Programas de cálculo automático (1979).
107.—A. Giménez: Análisis de la curva de luz del sistema binario eclipsante SVelorum (1979).
111.—M. J. Sevilla: Determinación de la latitud y la longitud por fotografías cenitales de estrellas (1980).
113.—M. J. Sevilla: Sobre un método de cálculo para la resolución de los problemas geodésicos directo e inverso (1981).
116.—A. González-Camacho y M. J. Sevilla: Algunas relaciones entre diferentes ejes que se consideran en la rotación de la Tierra (1981).
120.—F. Lambas y R. Vieira: Descripción, estudio de la precisión y aplicaciones geodésicas y geofísicas de los nuevos niveles de lectura electrónica (1981).
124.—M. J. Sevilla y P. Romero: Aplicación del método de colocación a la reducción de placas fotográficas de estrellas (1982).
125.—M. J. Sevilla y A. G. Camacho: Deformación rotacional de una terrella elástica (1982).
126.—M. J. Sevilla y P. Romero: Obtención de las medidas de la precisión en la determinación de la latitud y la longitud por fotografías cenitales de estrellas (1982).
132.—J. M. TORROJA: Historia de la Física hasta el siglo XIX. La Mecánica Celeste (1983).
140.—M. J. SEVILLA y M. D. MARTÍN: Diseño de una Microrred en la Caldera del Teide para el estudio de deformaciones de la corteza en la zona (1986).
143.—M. J. SEVILLA y P. ROMERO: Hamiltonian Formulation of the polar motion for an elastic earth's model (1986).
144.—P. ROMERO y M. J. SEVILLA: The Sasao-Okubo-Saito equations by Hamilton Theory: First Results (1986).

(continúa en la cuarta de cubierta)
168.—M. J. SEVILLA y P. ROMERO: Pre-Processing Geodetic Data of the Volcanic area of Teide to monitoring deformations (1988).
176.—M. J. SEVILLA: Soluciones progresivas en el método de Mínimos Cuadrados (1989).
188.—M. J. SEVILLA: Análisis de Observaciones Gravimétricas y Cálculo de Anomalías (1994)