Publication:
Polarizability of shelled particles of arbitrary shape in lossy media with an application to hematic cells

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We show that within the dipole approximation the complex polarizability of shelled particles of arbitrary shape can be written as the volume of the particle times a weighted average of the electric field in the particle, with weights determined by the differences in permittivities between the shells and the external, possibly lossy media. To calculate the electric field we use an adaptive-mesh finite-element method which is very effective in handling the irregular domains, material inhomogeneities, and complex boundary conditions usually found in biophysical applications. After extensive tests with exactly solvable models, we apply the method to four types of hematic cells: platelets, T-lymphocytes, erythrocytes, and stomatocytes. Realistic shapes of erythrocytes and stomatocytes are generated by a parametrization in terms of Jacobi elliptic functions. Our results show, for example, that if the average polarizability is the main concern, a confocal ellipsoid may be used as a model for a normal erythrocyte, but not for a stomatocyte. A comparison with experimental electrorotation data shows quantitatively the effect of an accurate geometry in the derivation of electrical cell parameters from fittings of theoretical models to the experimental data.
Description
© American Physical Society. This work was supported by the Spanish Ministerio de Educación under Project Nos. PR1/08-15928-A and FIS2005-00752.
Unesco subjects
Keywords
Citation
1.- C. J. Bottcher, Theory of Electric Polarization , Elsevier, Amsterdam,1952. 2.- J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941. 3.- M. L. Mansfield, J. F. Douglas, and E. J. Garboczi, Phys. Rev. E 64, 061401, 2001. 4.- A. G. Ramm, Wave Scattering by Small Bodies of Arbitrary Shape , World Scientific, Singapore, 2005. 5.- K. Asami and T. Yonezawa, Biochim. Biophys. Acta 1245, 317, 1995. 6.- E. Gheorghiu, Ann. N.Y. Acad. Sci., 873, 262, 1999. 7.- T. B. Jones, IEEE Eng. Med. Biol. Mag., 22, 33, 2003. 8.- B. K. P. Scaife, J. Mol. Struct., 479, 285, 1999. 9.- H. Kang and K. Kim, J. Comput. Math., 25, 157, 2007. 10.- L. Eyges, Ann. Phys., N.Y., 90, 266, 1975. 11.- C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983. 12.- T. Ambjörnsson, S. P. Apell, and G. Mukhopadhyay, Phys. Rev. E, 69, 031914, 2004. 13.- T. Ambjörnsson and G. Mukhopadhyay, J. Phys. A, 36, 10651, 2003. 14.- G. Dassios, M. Hadjinicolau, and G. Kamvyssas, in Mathematical Methods in Scattering Theory and Biomedical Engineering, edited by D. I. Fotiadis and C. V. Massalas, World Scientific, Singapore, 2006, p. 128. 15.- D. Vrinceanu and E. Gheorghiu, Bioelectrochem. Bioenerg., 40, 167, 1996. 16.- J. Gimsa, Bioelectrochemistry, 54, 23, 2001. 17.- N. G. Green and T. B. Jones, J. Phys. D, 40, 78, 2007. 18.- T. B. Jones, Electromechanics of Particles, Cambridge University Press, New York, 1995. 19.- M. Sancho, G. Martínez, and C. Martín, J. Electrost., 57, 143, 2003. 20.- C. Grosse and H. P. Schwan, Biophys. J., 63, 1632, 1992. 21.- M. Winterhalter and W. Helfrich, J. Phys. Chem. 92, 6865, 1988. 22.- M. Winterhalter and W. Helfrich, J. Phys. Chem., 96, 327, 1992. 23.- A. Irimajiri, T. Hanai, and A. Inouye, J. Theor. Biol., 78, 251, 1979. 24.- K. Asami, Y. Takahashi, and S. Takashima, Biochim. Biophys. Acta, 1010, 49, 1989. 25.- A. D. Michelson, Platelets, Elsevier, Amsterdam, 2007. 26.- M. Egger and E. Donath, Biophys. J., 68, 364, 1995. 27.- B. Neu, R. Georgieva, H. J. Meiselman, and H. Bäumler, Colloids Surf. A, 197, 27, 2002. 28.- D. Sokolowska and J. K. Moscicki, Phys. Rev. E, 71, 031701, 2005. 29.- H. J. Deuling and W. Helfrich, Biophys. J., 16, 861, 1976. 30.- E. Ponder, Hemolysis and Related Phenomena, Grune & Stratton, New York, 1948. 31.- T. L. Steck, in Cell Shape: Determinants, Regulation and Regulatory Role, edited by W. D. Stein and F. Bronner, Academic, San Diego, 1989, pp. 205–246. 32.- P. Wong, J. Theor. Biol., 196, 343, 1999. 33.- T. Auth, S. A. Safran, and N. S. Gov, Phys. Rev. E, 76, 051910, 2007. 34.- G. Lim H. W., M. Wortis, and R. Mukhopadhyay, Proc. Natl. Acad. Sci. U.S.A., 99, 16766, 2002. 35.- K. D. Tachev, K. D. Danov, and P. A. Kralchevsky, Colloids Surf., B 34, 123, 2004. 36.- S. Muñoz San Martin, J. L. Sebastián, M. Sancho, and J. M. Miranda, Phys. Med. Biol., 48, 1649, 2003. 37.- J. L. Sebastián, S. M. San Martín, M. Sancho, J. M. Miranda, and G. Álvarez, Phys. Rev. E, 72, 031913, 2005. 38.- S. Muñoz, J. L. Sebastián, M. Sancho, and G. Álvarez, Bioelectromagnetics, N.Y., 27, 521, 2006. 39.- P. Kuchel and E. Fackerell, Bull. Math. Biol., 61, 209, 1999. 40.- Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun, Dover, New York, 1965. 41.- ANSOFT HFSS User’s Manual, Ansoft Corporation, Pittsburgh, PA, 2002. 42.- J. Jin, The Finite Elem ent Method in Electromagnetics, Wiley, New York, 1993. 43.- J. Douglas, Jr., J. E. Santos, and D. Sheen, Math. Models Meth. Appl. Sci., 10, 593, 2000. 44.- C. E. Miller and C. S. Henriquez, IEEE Trans. Biomed. Eng., 35, 712 , 1988. 45.- K. Asami, J. Phys. D, 39, 492, 2006. 46.- J. L. Sebastián, S. Muñoz, M. Sancho, G. Álvarez, and J. M. Miranda, Phys. Med. Biol., 52, 6831, 2007. 47.- D. Giannacopoulos and S. McFee, IEEE Trans. Magn. 30, 3523, 1994. 48.- G. C. Hsiao, Z. Angew. Math. Mech., 70, T493, 1990. 49.- C. Liu, D. Sheen, and K. Huang, IEEE Trans. Nanobiosci., 2, 104, 2003. 50.- R. D. Miller and T. B. Jones, Biophys. J., 64, 1588, 1993. 51.- J. Gimsa, T. Müller, T. Schnelle, and G. Fuhr, Biophys. J., 71, 495, 1996. 52.- T. Kotnik and D. Miklavcic, Biophys. J., 79, 670, 2000. 53.- V. L. Sukhorukov, H. Mussauer, and U. Zimmermann, J. Membr. Biol., 163, 235, 1998. 54.- F. F. Becker, X.-B. Wang, Y. Huang, R. Pethig, and J. Vyukoukal, Proc. Natl. Acad. Sci. U.S.A., 92, 860, 1995. 55.- P. R. C. Gascoyne, F. F. Becker, and X.-B. Wang, Bioelectrochem. Bioenerg., 36, 115, 1995.
Collections