Universidad Complutense de Madrid
E-Prints Complutense

Indecomposable Lie algebras with nontrivial Levi decomposition cannot have filiform radical

Impacto

Descargas

Último año



Ancochea Bermúdez, José María y Campoamor Stursberg, Otto Ruttwig y García Vergnolle, Lucía (2006) Indecomposable Lie algebras with nontrivial Levi decomposition cannot have filiform radical. International Mathematical Forum, 1 (5-8). pp. 309-316. ISSN 1312-7594

[img]
Vista previa
PDF
99kB

URL Oficial: http://www.m-hikari.com/imf-password/5-8-2006/campoamorIMF5-8-2006.pdf


URLTipo de URL
http://www.m-hikari.com/index.htmlEditorial


Resumen

Let g = s n r be an indecomposable Lie algebra with nontrivial semisimple Levi subalgebra s and nontrivial solvable radical r. In this note it is proved that r cannot be isomorphic to a filiform nilpotent Lie algebra. The proof uses the fact that any Lie algebra g = snr with filiform radical would degenerate (even contract) to the Lie algebra snfn, where fn is the standard graded filiform
Lie algebra of dimension n = dim r. This leads to a contradiction, since no such indecomposable algebra snr with r = fn exists


Tipo de documento:Artículo
Palabras clave:Lie algebra, Levi decomposition, radical
Materias:Ciencias > Matemáticas > Álgebra
Código ID:20726
Depositado:09 Abr 2013 18:18
Última Modificación:12 Dic 2018 15:13

Descargas en el último año

Sólo personal del repositorio: página de control del artículo