Universidad Complutense de Madrid
E-Prints Complutense

On ν-quasi-ordinary power series: factorization, Newton trees and resultants

Impacto

Descargas

Último año



Artal Bartolo, Enrique y Cassou-Noguès, Pierrette y Luengo Velasco, Ignacio y Melle Hernández, Alejandro (2011) On ν-quasi-ordinary power series: factorization, Newton trees and resultants. In Topology of algebraic varieties and singularities. Contemporary Mathematics (538). American Mathematical Society, Providence, pp. 321-343. ISBN 978-0-8218-4890-6

[img] PDF
Restringido a Sólo personal autorizado del repositorio

311kB

URL Oficial: http://www.ams.org/bookstore?fn=20&arg1=conmseries&ikey=CONM-538


URLTipo de URL
http://www.ams.org/home/pageEditorial


Resumen

The concept of ν-quasi-ordinary power series, which is a generalization of quasi-ordinary power series, was first introduced by H. Hironaka. In the paper under review, the authors study ν-quasi-ordinary power series and give a factorization theorem for ν-quasi-ordinary power series in the first part. The proof of the theorem uses Newton maps. In the second part of the paper, using the factorization theorem, they introduce the Newton tree to encode the Newton process for any hypersurface singularity defined by a power series germ as in Notation 1.1. Finally, the authors describe a condition for two ν-quasi-ordinary power series to have an "intersection multiplicity " by using Newton trees and they can also compute this generalized intersection multiplicity, resultants and discriminant.


Tipo de documento:Sección de libro
Información Adicional:

Papers from the Conference on Topology of Algebraic Varieties, in honor of Anatoly Libgober's 60th birthday, held in Jaca, June 22–26, 2009

Palabras clave:Quasi-ordinary power series, resultant, factorisation
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:20877
Depositado:16 Abr 2013 16:19
Última Modificación:02 Aug 2018 11:30

Descargas en el último año

Sólo personal del repositorio: página de control del artículo