Publication:
On a conjecture by A. Durfee

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010
Authors
Carmona Ruber, Jorge
Melle Hernández, Alejandro
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Cambridge University Press
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This note provides a negative answer to the following question of A. H. Durfee [Invent. Math. 28 (1975), 231–241; ]: Is it true for arbitrary polynomials F(x,y,z) having an isolated singularity at the origin that the local monodromy is of finite order if and only if a resolution of F(x,y,z)=0 contains no cycles? Here "the monodromy'' means the action on the cohomology of the Milnor fiber of F corresponding to the degeneration F(x,y,z)=t. The authors consider the following example: F(x,y,z)=(xz−y2)3−((y−x)x2)2+z6. They calculate the graph of the resolution (which is a tree) and invariant polynomials of the monodromy (showing the presence of Jordan blocks of a size greater than 1). The key point in these calculations is that this singularity belongs to the class of superisolated (SIS) surface singularities which was studied in detail by the first named author [Mem. Amer. Math. Soc. 109 (1994), no. 525, x+84 pp.;]. SISs are the singularities of the form F(x,y,z)=f(x,y,z)+lN, where l is a generic linear form, N is a sufficiently large integer and f(x,y,z)=0 is a projective plane algebraic curve, the cone over which is the tangent cone of the singularity F(x,y,z). The main step in detecting that the order of the monodromy of a SIS is infinite is the calculation of the Alexander polynomial [A. S. Libgober, Duke Math. J. 49 (1982), no. 4, 833–851;] of the plane curve f(x,y,z)=0. In the authors' example, the plane sextic (xz−y2)3−((y−x)x2)2 has two singularities with local types u3=v10 and u2=v3 respectively and has as its Alexander polynomial t2−t+1. The latter yields that the monodromy of F has an infinite order. The paper is concluded with a series of other interesting observations on the relation between the topology of resolution and monodromy of SIS singularities.
Description
Selected papers from the 10th Workshop held at São Paulo University, São Carlos, July 27–August 2, 2008
UCM subjects
Geometria algebraica
Unesco subjects
1201.01 Geometría Algebraica
Keywords
Citation
E. Artal Bartolo, Sur les couples des Zariski, J. Algebraic Geom., 3 (1994), 223-247. E. Artal Bartolo, Forme de Jordan de la monodromie des singularites superisolees de surfaces, Mem. Amer. Math. Soc., 525 (1994). E. Artal Bartolo and J. Carmona Ruber, Zariski pairs, fundamental groups and Alexander polynomials, J. Math. Soc. Japan 50 (1998), no. 3, 521-543. E. Artal, J. Carmona, J.I. Cogolludo, and H.O. Tokunaga, Sextics with singular points in special position, J. Knot Theory Ramications 10 (2001), 547-578. E. Artal-Bartolo, J.I. Cogolludo, and H.O. Tokunaga, A survey on Zariski pairs, Algebraic geometry in East Asia|Hanoi 2005, 1-100, Adv. Stud. Pure Math., 50, Math. Soc. Japan, Tokyo, 2008. A. Degtyarev, Alexander polynomial of a curve of degree six, Knot theory and Ramif. 3 (1994), no. 4, 439-454. M.G M. van Doorn and J.H.M. Steenbrink, A supplement to the monodromy theorem, Abh. Math. Sem. Univ. Hamburg 59 (1989),225-233. A. Durfee, The monodromy of a degenerating family of curves, Inv. Math. 28, 1975, 231-241. H. Esnault, Fibre de Milnor d'un c^one sur une courbe plane singuliere, Inv. Math. 68, 1982, 477-496. G.-M. Greuel, G. Pster, and H. Sch�onemann. Singular 3.0 | A computer algebra system for polynomial computations. In M. Kerber and M. Kohlhase: Symbolic computation and automated reasoning, The Calculemus-2000 Symposium (2001), pages 227-233. A. Landman, On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities, Trans. Amer. Math. Soc. 181 (1973), 89-126. D.T. L^e, Sur les noeuds algebriques, Compositio Math. 25, (1972), 281-321. A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49 (1982), no. 4, 833-851. A. Libgober, Alexander invariants of plane algebraic curves, Singularities, Part 2 (Arcata, Calif., 1981), 135-143, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983. A. Libgober, Characteristic varieties of algebraic curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001),Kluwer Acad. Publ., Dordrecht, 2001, 215-254. F. Loeser and M. Vaquie, Le polyn^ome d'Alexander d'une courbe plane projective, Topology 29 (1990), no. 2, 163-173. I. Luengo, The -constant stratum is not smooth, Invent. Math., 90 (1), 139-152, 1987. I. Luengo and A. Melle Hernandez, A formula for the Milnor number C.R. Acad. Sc. Paris, 321, Serie I. (1995), 1473-1478. A. Nemethi, Some topological invariants of isolated hypersurface singularities, Low dimensional topology (Eger, 1996/Budapest, 1998), 353-413, Bolyai Soc. Math. Stud., 8, Jnos Bolyai Math. Soc., Budapest, 1999. A. Nemethi, Invariants of normal surface singularities, Real and complex singularities, 161{208, Contemp. Math., 354, Amer. Math. Soc., Providence, RI, 2004. A. Nemethi and J.H.M. Steenbrink, On the monodromy of curve singularities, Math. Z. 223 (1996), no. 4, 587-593. W.D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), no. 2, 299-344. M. Oka, A new Alexander-equivalent Zariski pair, Dedicated to the memory of Le Van Thiem (Hanoi, 1998). Acta Math. Vietnam. 27 (2002), 349-357. M. Oka, Alexander polynomials of sextics, J. Knot Theory Ramications 12 (2003), no. 5, 619-636. D.T. Pho, Classication of singularities on torus curves of type (2; 3), Kodai Math. J., 24, 2001, 259-284. [26] R. Randell, Milnor bers and Alexander polynomials of plane curves, Singularities, Part 2 (Arcata, Calif., 1981), 415-419, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983. M. Sebastiani and R. Thom, Un resultat sur la monodromie, Invent. Math. 13 (1971), 90-96. J.H.M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976) Alphen a/d Rijn: Sijtho & Noordho 1977, pp.525-563. O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929), 305-328. O. Zariski, The topological discriminant group of a Riemann surface of genus p, Amer. J. Math. 59 (1937), 335-358.