Publication:
On the methanol-water electroosmotic transport in a Nafion membrane

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-06-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Electroosmosis experiments through a Nafion membrane have been performed using methanol–water KCl solutions in different experimental situations. The influence on the electroosmotic transport of the percentage of methanol on solvent at different electrolyte concentrations has been studied. The experimental results show that the presence of methanol on the solutions affects strongly to the electroosmotic flow. From the current–voltage curves determined for this membrane system, the limiting currents were obtained at different volume percentages of methanol. The values obtained decrease with increasing the percentage of methanol and a minimum value seems to be reached at certain percentage of alcohol.
Description
© 2004 Elsevier B.V. Financial support from Ministerio de Ciencia y Tecnología of Spain under Project BFM2000-0625 is gratefully acknowledged.
UCM subjects
Unesco subjects
Keywords
Citation
[1] S.R. De Groot, Thermodynamics of Irreversible Processes, fourth ed., North-Holland, Amsterdam, 1966. [2] F. Helfferich, Ion Exchange, Dover, London, 1995. [3] M. Tasaka, S. Tamura, N. Takemura, Concentration dependence and streaming potential across charged membranes, J. Membr. Sci. 12 (1982) 169. [4] A. Narebska, W. Kujawski, S. Koter, Irreversible thermodynamics of transport across charged membranes. Part II. Ion–water interactions in permeation of alkali, J. Membr. Sci. 30 (1987) 125. [5] T. Okada, S. Kjelstrup, H. Hanche-Olsen, Water transport ion cation exchange membranes, J. Membr. Sci. 66 (1992) 179. [6] T. Okada, G. Xie, O. Gorseth, S. Kjelstrup, N. Nakamura, Ion water transport characteristics of Nafion membranes as electrolytes, Electrochem. Acta 43 (1998) 3741. [7] C. Ruiz-Bauzá, V.M. Barragán García, Electroosmotic transport through ion-exchange membranes, in: T.B. Srensen (Ed.), Surface Chemistry and Electrochemistry of Membranes, vol. 79, Marcel Dekker, New York, 1999, pp. 511–541. [8] M. Ise, K.D. Kreuer, J. Maier, Electroosmotic drag in polymer membranes: an electrophoretic NMR study, Solid State Ionics 125 (1999) 213. [9] S. Koter, The equivalent pore radius of charged membranes from electroosmotic flow, J. Membr. Sci. 166 (2000) 127. [10] S. Koter, Transport of simple electrolyte solutions through exchange membranes. The capillary model, J. Membr. Sci. 206 (2002) 201. [11] N. Laksminarayanaiah, Transport Phenomena in Membranes, Academic Press, New York, 1969. [12] A. Heinzel, V.M. Barragán, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cell, J. Power Sources 84 (1999) 70. [13] G.J.M. Janssen, M.L.J. Overvelde, Water transport in the proton-exchange-membrane fuel cell: measurements of the effective drag coefficient, J. Power Sources 101 (2001) 117. [14] W.Y. Hsu, T.D. Gierke, Ion transport and clustering in Nafion perfluorinated membranes, J. Membr. Sci. 13 (1983) 307. [15] K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci. 185 (2001) 29. [16] S. Kjelstrup, T. Okada, M. Ottøy, Water, ion and entropy transport in ion-exchange membranes, in: T.B. Sorensen (Ed.), Surface Chemistry and Electrochemistry of Membranes, vol. 79, Marcel Dekker, New York, 1999, pp. 455–481. [17] D. Nandan, H. Mohan, R.M. Iyer, Methanol and water uptakes, densities, equivalental volumes and thicknesses of several uni- and divalent ionic perfluorosulphonate exchange membranes (Nafion-117) and their methanol–water fractionation behavior at 298 K, J. Membr. Sci. 71 (1992) 69. [18] G.J. Janz, Silver–silver halide electrodes, in: D.J.G. Ives, G.J. Janz (Eds.), Reference Electrodes, Academic Press, London, 1961, pp. 179–230. [19] V.M. Barragán, C. Ruiz-Bauzá, Current–voltage curves for a cation-exchange membrane in methanol–water electrolyte solutions, J. Colloid Interface Sci. 247 (2002) 138. 120 V.M. Barragán et al. / Journal of Membrane Science 236 (2004) 109–120 [20] V.S. Bagotzky, Fundamentals of Electrochemistry, Plenum Press, New York, 1993. [21] S. Nouri, L. Dammak, C. Larchet, B. Auclair, Correlation between ion-exchange membranes characteristics for evaluation of the permselectivity and the diffusion coefficients, Desalination 147 (2002) 363. [22] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, Permeation of electrolyte water–methanol solutions through a Nafion membrane, J. Colloid Interface Sci., 2003, in press. [23] G. Schmid, Electrochemistry of capillary systems with narrow pores. II. Electroosmosis, J. Membr. Sci. 150 (1998) 159. [24] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, Osmosis of methanol–water electrolyte solutions through a Nafion membrane, in: Abstracts of the International Congress on Membranes and Membrane Process, 2002, p. 180. [25] T. Chou, A. Tanioka, ionic behavior across charged membranes in methanol–water solutions. I. Membrane potential, J. Membr. Sci. 144 (1998) 275. [26] V.M. Barragán, C. Ruiz-Bauzá, B. Seoane, J.P.G. Villaluenga, Permeation of methanol–water electrolyte solutions through cationexchange membranes, in: Proceeding of the 13th Annual Meeting, The North America Membrane Society, 2002, p. 26
Collections