Publication:
Transport of methanol and water through Nafion membranes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-05
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The mass flow originated when two methanol–water solutions of different methanol concentrations are separated by a membrane has been studied for two Nafion membranes. From the experimental results, the methanol and water permeabilities have been estimated. The experiments were carried out in absence and in presence of an electrolyte in the solutions. The obtained results show that, in the absence of the electrolyte, the methanol diffusion flow is higher than the osmotic water flow at all the methanol concentration gradient established, observing that the total mass flow takes place always from the concentrated toward the dilute solution. In contrast, in the presence of the electrolyte, an inversion of the total mass flow is observed at percentages of methanol higher than 40 wt.%. These experimental results could be important in relation to the problem of the methanol crossover in direct methanol fuel cells.
Description
© 2003 Elsevier B.V. Financial support from Ministerio de Ciencia y Tecnología of Spain under Project BFM2000-0625 is gratefully acknowledged.
UCM subjects
Unesco subjects
Keywords
Citation
[1] F. Helfferich, Ion Exchange, Dover, New York, 1995. [2] H.P. Hogarth, G.A. Hards, Platinum Met. Rev. 40 (1996) 909. [3] B. Gurau, E.S. Smotkin, J. Power Sources 112 (2002) 3339. [4] M.W. Verbrugge, J. Electrochem. Soc. 136 (1989) 417. [5] M.W. Verbrugge, R.F. Hill, J. Electrochem. Soc. 137 (1990) 886. [6] T.A. Zawodzinski, T.E. Springer, F. Uribe, S. Gottesfeld, Solid State Ionics 60 (1993) 199. [7] T.A. Zawodzinski, J. Davey, J. Valerio, S. Gottesfeld, Electrochim. Acta 40 (1995) 297. [8] K. Scott, W. Taama, J. Cruickshank, J. Power Sources 65 (1997) 159. [9] E.K. Unnikrishnan, S.D. Kumar, B. Maiti, J. Membr. Sci. 137 (1997) 133. [10] T. Okada, G. Xie, O. Gorseth, S. Kjelstrup, N. Nakamura, T. Arimura, Electrochim. Acta 43 (1998) 3741. [11] J. Cruickshank, K. Scott, J. Power Sources 70 (1998) 40. [12] D.H. Jung, C.H. Lee, C.S. Kim, D.R. Shin, J. Power Sources 71 (1998) 169. [13] V.M. Barragán, A. Heinzel, J. Power Sources 104 (2002) 66. [14] J. D’Ans, H. Surawsky, C. Synowietz, Densities of liquid systems and their capacities, in: Numerical Data and Functional Relationships in Science and Technology. Group IV. Macroscopic and Technical Properties of Matter, vol. 1, Springer, New York, 1977. [15] P.S. Kauranen, E. Skou, J. Appl. Electrochem. 26 (1996) 909. [16] V.S. Bagotzky, Fundamental of Electrochemistry, Plenum Press, New York, 1993. [17] J.O’M. Bockris, A.K.N. Reddy, Modern Electrochemistry, vol. 1, Plenum Press, New York, 1973. [18] V.M. Barragán, C. Ruiz-Bauzá, J. Colloid Interf. Sci. 247 (2002) 138. [19] V. Tricoli, J. Electrochem. Soc. 145 (1998) 3798. [20] R.F.D. Costa, J.Z. Ferreira, C. Deslouis, J. Membr. Sci. 215 (2003) 115. [21] M. Legras, Y. Hirata, Q.T. Nguyen, D. Langevin, M. Métayer, Desalination 147 (2002) 371.
Collections