Publication:
Permeation of electrolyte water-methanol solutions through a Nafion membrane

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-12-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press Inc Elsevier Science
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The volume flux through a cation-exchange membrane (Nafion 117) separating two equal electrolyte water-methanol solutions as a function of the pressure difference was determined under different experimental conditions. The results show that permeation rates through the membrane are strongly dependent on the methanol content of the solutions, thus the value of the flux increases when the methanol percentage increases. The effect of the electrolyte concentration of the solution on the membrane permeability is less important, although its influence becomes significant at low electrolyte concentration and high methanol content on solvent. This behavior is explained in terms of the amount of solvent sorbed by the membrane. Typical flux behaviors observed with pressure difference are linear at low pressures, exhibiting a positive deviation at higher pressure difference values.
Description
© 2003 Elsevier Inc. This work was supported by the Ministry of Science and Technology of Spain, Project BFM2000-0625.
UCM subjects
Unesco subjects
Keywords
Citation
[1] M.P. Hogarth, G.A. Hards, Platinum Met. Rev. 40 (1996) 150. [2] K. Scott, W. Taama, J. Cruickshank, J. Power Sources 65 (1997) 159. [3] A. Heinzel, V.M. Barragán, J. Power Sources 84 (1999) 70. [4] J. Cruickshank, K. Scott, J. Power Sources 70 (1998) 40. [5] T. Okada, G. Xie, O. Gorseth, S. Kjelstrup, N. Nakamura, T. Arimura, Electrochim. Acta 43 (1998) 3741. [6] E.K. Unnikrishnan, S.D. Kumar, B. Maiti, J. Membrane Sci. 137 (1997) 133. [7] P.S. Kauranen, E. Skou, J. Appl. Electrochem. 26 (1996) 909. [8] B.S. Pivovar, Y.Wang, E.L. Cussler, J.Membrane Sci. 154 (1999) 155. [9] K.D. Kreuer, J. Membrane Sci. 185 (2001) 29. [10] T.D. Gierke, G.E. Munn, F.C. Wilson, J. Polym. Sci. Polym. Phys. Ed. 19 (1981) 1687. [11] D. Nandan, H. Mohan, R.M. Iyer, J. Membrane Sci. 71 (1992) 69. [12] S.J. Sondheimer, N.J. Bune, C.A. Fyfe, J. Macromol. Sci. Macromol. Chem. Phys. C 26 (1986) 353. [13] S. Kumar, M. Pineri, J. Polym. Sci. Polym. Phys. Ed. 24 (1986) 1767. [14] P. Dimitrova, K.A. Friedrich, B. Vogt, U. Stimmimg, J. Electrochem. Chem. 532 (2002) 75. [15] E. Skou, P. Kauranen, J. Hentschel, Solid State Ionics 97 (1997) 333. [16] X. Ren, T.E. Springer, S. Gottesfeld, J. Electrochem. Soc. 147 (2000) 92. [17] I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Interscience, New York, 1967. [18] S. Kjelstrup, T. Okada, M. Ottøy, in: T.S. Sorensen (Ed.), Surface Chemistry and Electrochemistry of Membranes, Dekker, New York, 1999, Chap. 13. [19] A. Narebska, W. Kujawski, S. Koter, J. Membrane Sci. 30 (1987) 125. [20] A. Lehmani, P. Turq, M. Périé, J. Périé, J.P. Simonin, J. Electroanal. Chem. 428 (1997) 81. [21] M. Ise, K.D. Kreuer, J. Maier, Solid State Ionics 125 (1999) 213. [22] N. Carretta, V. Tricoli, F. Picchioni, J. Membrane Sci. 166 (2000) 189.
Collections