Universidad Complutense de Madrid
E-Prints Complutense

Le rang du systeme linéaire des racines d'une algèbre de Lie rigide résoluble complexe

Impacto

Downloads

Downloads per month over past year

Ancochea Bermúdez, José María and Goze, Michel (1992) Le rang du systeme linéaire des racines d'une algèbre de Lie rigide résoluble complexe. Communications in Algebra, 20 (3). pp. 875-887. ISSN 0092-7872

[img] PDF
Restringido a Repository staff only

417kB

Official URL: http://0-www.tandfonline.com.cisne.sim.ucm.es/doi/pdf/10.1080/00927879208824380


URLURL Type
http://www.tandfonline.comPublisher


Abstract

One knows that a solvable rigid Lie algebra is algebraic and can be written as a semidirect product of the form g=T⊕n if n is the maximal nilpotent ideal and T a torus on n . The main result of the paper is equivalent to the following: If g is rigid then T is a maximal torus on n . The authors then study algebras of this form where n is a filiform nilpotent algebra. A classification of this law is given in the case in which the weights of T are kα , with 1≤k≤n=dimn .


Item Type:Article
Uncontrolled Keywords:complex solvable rigid Lie algebra; filiform nilradical; adjoint operator
Subjects:Sciences > Mathematics > Algebra
ID Code:21097
Deposited On:29 Apr 2013 16:13
Last Modified:12 Dec 2018 15:13

Origin of downloads

Repository Staff Only: item control page