### Impacto

### Downloads

Downloads per month over past year

Etayo Gordejuela, J. Javier and Martínez, E.
(2013)
*The symmetric crosscap number of the groups of small-order.*
Journal of algebra and its applications, 12
(2).
ISSN 0219-4988

Official URL: http://www.worldscientific.com/doi/abs/10.1142/S0219498812501642?af=R

URL | URL Type |
---|---|

http://www.worldscientific.com/ | Publisher |

## Abstract

Every finite group G acts as an automorphism group of some non-orientable Klein surfaces without boundary. The minimal genus of these surfaces is called the symmetric crosscap number and denoted by (sigma) over tilde (G). It is known that 3 cannot be the symmetric crosscap number of a group. Conversely, it is also known that all integers that do not belong to nine classes modulo 144 are the symmetric crosscap number of some group. Here we obtain infinitely many groups whose symmetric crosscap number belong to each one of six of these classes. This result supports the conjecture that 3 is the unique integer which is not the symmetric crosscap number of a group. On the other hand, there are infinitely many groups with symmetric crosscap number 1 or 2. For g > 2 the number of groups G with (sigma) over tilde (G) = g is finite. The value of (sigma) over tilde (G) is known when G belongs to certain families of groups. In particular, if o(G) < 32, <(sigma)over tilde>(G) is known for all except thirteen groups. In this work we obtain it for these groups by means of a one-by-one analysis. Finally we obtain the least genus greater than two for those exceptional groups whose symmetric crosscap number is 1 or 2.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Klein surface; NEC group; automorphism group; symmetric crosscap number |

Subjects: | Sciences > Mathematics > Algebra |

ID Code: | 21221 |

Deposited On: | 06 May 2013 10:12 |

Last Modified: | 06 May 2013 10:12 |

### Origin of downloads

Repository Staff Only: item control page