Publication:
Constraining cosmic rays and magnetic fields in the Perseus galaxy cluster with TeV observations by the MAGIC telescopes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-05
Authors
Fonseca González, Mª Victoria
Nieto, Daniel
Satalecka, Konstanzja
Scapin, Valeria
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
EDP Sciencies
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Galaxy clusters are being assembled today in the most energetic phase of hierarchical structure formation which manifests itself in powerful shocks that contribute to a substantial energy density of cosmic rays (CRs). Hence, clusters are expected to be luminous gamma-ray emitters since they also act as energy reservoirs for additional CR sources, such as active galactic nuclei and supernova-driven galactic winds. To detect the gamma-ray emission from CR interactions with the ambient cluster gas, we conducted the deepest to date observational campaign targeting a galaxy cluster at very high-energy gamma-rays and observed the Perseus cluster with the MAGIC Cherenkov telescopes for a total of similar to 85 h of effective observing time. This campaign resulted in the detection of the central radio galaxy NGC 1275 at energies E > 100 GeV with a very steep energy spectrum. Here, we restrict our analysis to energies E > 630 GeV and detect no significant gamma-ray excess. This constrains the average CR-to-thermal pressure ratio to be less than or similar to 1-2%, depending on assumptions and the model for CR emission. Comparing these gamma-ray upper limits to models inferred from cosmological cluster simulations that include CRs constrains the maximum CR acceleration efficiency at structure formation shocks to be <50%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Finally, we derive lower limits on the magnetic field distribution assuming that the Perseus radio mini-halo is generated by secondary electrons/positrons that are created in hadronic CR interactions: assuming a spectrum of E-2.2 around TeV energies as implied by cluster simulations, we limit the central magnetic field to be > 4-9 mu G, depending on the rate of decline of the magnetic field strength toward larger radii. This range is well below field strengths inferred from Faraday rotation measurements in cool cores. Hence, the hadronic model remains a plausible explanation of the Perseus radio mini-halo.
Description
© ESO. We thank the anonymous referee for valuable comments. We would like to thank Andrey Kravtsov for the useful comments on the paper. We would like to thank the Instituto de Astrof´ısica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN, the Swiss National Fund SNF, and the Spanish MICINN is gratefully acknowledged. This work was also supported by the Marie Curie program, by the CPAN CSD2007-00042 and MultiDark CSD2009-00064 projects of the Spanish ConsoliderIngenio 2010 programme, by grant DO02-353 of the Bulgarian NSF, by grant 127740 of the Academy of Finland, by the YIP of the Helmholtz Gemeinschaft, by the DFG Cluster of Excellence “Origin and Structure of the Universe”, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. C.P. gratefully acknowledges financial support of the Klaus Tschira Foundation. A.P. acknowledges NSF grant AST 0908480 for support.
Keywords
Citation
Acciari, V. A., Aliu, E., Arlen, T., et al. 2009, ApJ, 706, L275. Ackermann, M., Ajello, M., Allafort, A., et al. 2010a, ApJ, 717, L71. Ackermann, M., Ajello, M., Allafort, A., et al. 2010b, JCAP, 5, 25. Aharonian, F., Akhperjanian, A. G., Anton, G., et al. 2009a, A&A, 495, 27. Aharonian, F., Akhperjanian, A. G., Anton, G., et al. 2009b, A&A, 502, 437. Ajello, M., Rebusco, P., Cappelluti, N., et al. 2009, ApJ, 690, 367. Ajello, M., Rebusco, P., Cappelluti, N., et al. 2010, ApJ, 725, 1688. Aleksić, J., Alvarez, E. A., Antonelli, L. A., et al. 2012a, A&A, 539, L2. Aleksić, J., Alvarez, E. A., Antonelli, L. A., et al. 2012b, Astroparticle Physics, 35, 435. Aleksić, J., Alvarez, E. A., Antonelli, L. A., et al. 2011, J. Cosmology Astropart. Phys., 6, 35. Aleksić, J., Antonelli, L. A., Antoranz, P., et al. 2010a, ApJ, 710, 634. Aleksić, J., Antonelli, L. A., Antoranz, P., et al. 2010b, ApJ, 723, L207. Becker, M. R. & Kravtsov, A. V. 2011, ApJ, 740, 25. Blasi, P. & Colafrancesco, S. 1999, Astroparticle Physics, 12, 169. Blasi, P., Gabici, S., & Brunetti, G. 2007, International Journal of Modern Physics A, 22, 681. Bonafede, A., Feretti, L., Murgia, M., et al. 2010, A&A, 513, A30+. Brunetti, G. & Blasi, P. 2005, MNRAS, 363, 1173. Brunetti, G., Cassano, R., Dolag, K., & Setti, G. 2009, A&A, 507, 661. Brunetti, G. & Lazarian, A. 2007, MNRAS, 378, 245. Brunetti, G. & Lazarian, A. 2011, MNRAS, 410, 127. Carilli, C. L. & Taylor, G. B. 2002, ARA&A, 40, 319. Celotti, A., Kuncic, Z., Rees, M. J., & Wardle, J. F. C. 1998, MNRAS, 293, 288. Churazov, E., Forman, W., Jones, C., & Böhringer, H. 2003, ApJ, 590, 225. Churazov, E., Forman, W., Vikhlinin, A., et al. 2008, MNRAS, 388, 1062. Churazov, E., Tremaine, S., Forman, W., et al. 2010, MNRAS, 404, 1165. Clarke, T. E., Kronberg, P. P., & Böringer, H. 2001, ApJ, 547, L111 Colafrancesco, S., Profumo, S., & Ullio, P. 2006, A&A, 455, 21. Cuesta, A. J., Jeltema, T. E., Zandanel, F., et al. 2011, ApJ, 726, L6+. Daum, A., Hermann, G., Hess, M., et al. 1997, Astroparticle Physics, 8, 1. Dennison, B. 1980, ApJ, 239, L93. Dolag, K. & Enßlin, T. A. 2000, A&A, 362, 151. Domainko, W., Nedbal, D., Hinton, J. A., & Martineau-Huynh, O. 2009, International Journal of Modern Physics D, 18, 1627. Donnert, J., Dolag, K., Brunetti, G., Cassano, R., & Bonafede, A. 2010a, MNRAS, 401, 47. Donnert, J., Dolag, K., Cassano, R., & Brunetti, G. 2010b, MNRAS, 407, 1565. Dubois, Y. & Teyssier, R. 2008, A&A, 482, L13. Dugger, L., Jeltema, T. E., & Profumo, S. 2010, J. Cosmology Astropart. Phys., 12, 15. Dursi, L. J. & Pfrommer, C. 2008, ApJ, 677, 993. Enßlin, T., Pfrommer, C., Miniati, F., & Subramanian, K. 2011, A&A, 527, A99+. Enßlin, T. A., Biermann, P. L., Kronberg, P. P., & Wu, X.-P. 1997, ApJ, 477, 560. Enßlin, T. A. & Brüggen, M. 2002, MNRAS, 331, 1011. Enßlin, T. A., Pfrommer, C., Springel, V., & Jubelgas, M. 2007, A&A, 473, 41. Fabian, A. C. 1994, ARA&A, 32, 277. Fabian, A. C., Sanders, J. S., Allen, S. W., et al. 2011, MNRAS, 418, 2154. Feretti, L., Burigana, C., & Enßlin, T. A. 2004, New A Rev., 48, 1137. Fomin, V. P., Stepanian, A. A., Lamb, R. C., et al. 1994, Astroparticle Physics, 2, 137. Fujita, Y. & Ohira, Y. 2012, ApJ, 746, 53. Galante, N., Acciari, V. A., Aliu, E., et al. 2009, ArXiv:0907.5000, 31nd International Cosmic Ray Conference, Lodz, Poland. Gao, L., Frenk, C. S., Jenkins, A., Springel, V., & White, S. D. M. 2012, MNRAS, 419, 1721. Giovannini, G., Feretti, L., Venturi, T., Kim, K. T., & Kronberg, P. P. 1993, ApJ, 406, 399. Gitti, M., Brunetti, G., & Setti, G. 2002, A&A, 386, 456. Helder, E. A., Vink, J., Bassa, C. G., et al. 2009, Science, 325, 719. Hirotani, K., Iguchi, S., Kimura, M., & Wajima, K. 1998, in Abstracts of the 19th Texas Symposium on Relativistic Astrophysics and Cosmology, held in Paris, France, Dec. 14-18, 1998. Eds.: J. Paul, T. Montmerle, and E. Aubourg (CEA Saclay). Hudson, D. S., Mittal, R., Reiprich, T. H., et al. 2010, A&A, 513, A37+. Jeltema, T. E., Kehayias, J., & Profumo, S. 2009, Phys. Rev. D, 80, 023005. Jeltema, T. E. & Profumo, S. 2011, ApJ, 728, 53. Jubelgas, M., Springel, V., Enßlin, T., & Pfrommer, C. 2008, A&A, 481, 33. Kang, H. & Jones, T. W. 2005, ApJ, 620, 44. Kempner, J. C., Blanton, E. L., Clarke, T. E., et al. 2004, in The Riddle of Cooling Flows in Galaxies and Clusters of galaxies. Keshet, U. 2010, ArXiv:1011.0729. Keshet, U. & Loeb, A. 2010, ApJ, 722, 737. Kim, K.-T., Kronberg, P. P., & Tribble, P. C. 1991, ApJ, 379, 80. Kiuchi, R., Mori, M., Bicknell, G. V., et al. 2009, ApJ, 704, 240. Kuchar, P. & Enßlin, T. A. 2011, A&A, 529, A13+. Kushnir, D., Katz, B., & Waxman, E. 2009, J. Cosmology Astropart. Phys., 9, 24. Li, T.-P. & Ma, Y.-Q. 1983, ApJ, 272, 317. Lyutikov, M. 2006, MNRAS, 373, 73. Mahdavi, A., Hoekstra, H., Babul, A., & Henry, J. P. 2008, MNRAS, 384, 1567. McNamara, B. R. & Nulsen, P. E. J. 2007, ARA&A, 45, 117. Miniati, F. 2003, MNRAS, 342, 1009. Miniati, F., Ryu, D., Kang, H., & Jones, T. W. 2001, ApJ, 559, 59. Parrish, I. J. & Quataert, E. 2008, ApJ, 677, L9. Pedlar, A., Ghataure, H. S., Davies, R. D., et al. 1990, MNRAS, 246, 477. Perkins, J. S. 2008, in American Institute of Physics Conference Series, Vol. 1085, American Institute of Physics Conference Series, ed. F. A. Aharonian, W. Hofmann, & F. Rieger, 569–572. Perkins, J. S., Badran, H. M., Blaylock, G., et al. 2006, ApJ, 644, 148. Pfrommer, C. 2008, MNRAS, 385, 1242. Pfrommer, C. & Dursi, L. J. 2010, Nature Physics, 6, 520. Pfrommer, C. & Enßlin, T. A. 2003, A&A, 407, L73. Pfrommer, C. & Enßlin, T. A. 2004a, A&A, 413, 17. Pfrommer, C. & Enßlin, T. A. 2004b, MNRAS, 352, 76. Pfrommer, C., Enßlin, T. A., & Sarazin, C. L. 2005, A&A, 430, 799. Pfrommer, C., Enßlin, T. A., & Springel, V. 2008, MNRAS, 385, 1211. Pfrommer, C., Enßlin, T. A., Springel, V., Jubelgas, M., & Dolag, K. 2007, MNRAS, 378, 385. Pfrommer, C. & Jones, T. W. 2011, ApJ, 730, 22. Pfrommer, C., Springel, V., Enßlin, T. A., & Jubelgas, M. 2006, MNRAS, 367, 113. Pinzke, A. & Pfrommer, C. 2010, MNRAS, 409, 449. Pinzke, A., Pfrommer, C., & Bergstr¨om, L. 2009, Physical Review Letters, 103, 181302. Pinzke, A., Pfrommer, C., & Bergstr¨om, L. 2011, Phys. Rev. D, 84, 123509. Pohl, M. 1994, A&A, 287, 453. Quataert, E. 2008, ApJ, 673, 758. Reimer, A., Reimer, O., Schlickeiser, R., & Iyudin, A. 2004, A&A, 424, 773. Reimer, O., Pohl, M., Sreekumar, P., & Mattox, J. R. 2003, ApJ, 588, 155. Reiprich, T. H. & B¨ohringer, H. 2002, ApJ, 567, 716. Rephaeli, Y., Nevalainen, J., Ohashi, T., & Bykov, A. M. 2008, Space Science Reviews, 134, 71. Rolke, W. A., López, A. M., & Conrad, J. 2005, Nuclear Instruments and Methods in Physics Research A, 551, 493. Ryu, D., Kang, H., Hallman, E., & Jones, T. W. 2003, ApJ, 593, 599. Sánchez-Conde, M. A., Cannoni, M., Zandanel, F., Gómez, M. E., & Prada, F. 2011, J. Cosmology Astropart. Phys., 12, 11. Schlickeiser, R. 2002, Cosmic ray astrophysics (Springer. ISBN 3-540-66465-3). Schlickeiser, R., Sievers, A., & Thiemann, H. 1987, A&A, 182, 21. Sijbring, L. G. 1993, PhD thesis, Groningen University. Sikora, M. & Madejski, G. 2000, ApJ, 534, 109. Springel, V. & Hernquist, L. 2003, MNRAS, 339, 289. Taylor, G. B., Fabian, A. C., & Allen, S. W. 2002, MNRAS, 334, 769. Taylor, G. B., Gugliucci, N. E., Fabian, A. C., et al. 2006, MNRAS, 368, 1500. Vestrand, W. T. 1982, AJ, 87, 1266. Vikhlinin, A., Markevitch, M., Murray, S. S., et al. 2005, ApJ, 628, 655. Vogt, C. & Enßlin, T. A. 2005, A&A, 434, 67. Voit, G. M. 2005, Reviews of Modern Physics, 77, 207. Völk, H. J. 1989, A&A, 218, 67. Völk, H. J., Aharonian, F. A.,& Breitschwerdt, D. 1996, Space Science Reviews, 75, 279. Wik, D. R., Sarazin, C. L., Finoguenov, A., et al. 2011, ApJ, 727, 119. ZuHone, J. A., Markevitch, M., & Lee, D. 2011, ApJ, 743, 16.
Collections