Publication:
Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
It has been recently reported that a granular mixture in which grains differ in their restitution coefficients presents segregation: the more inelastic particles sink to the bottom. When other segregation mechanisms as buoyancy and the Brazil nut effect are present, the inelasticity induced segregation can compete with them. First, a detailed analysis, based on numerical simulations of two dimensional systems, of the competition between buoyancy and the inelasticity induced segregation is presented, finding that there is a transition line in the parameter space that determines which mechanism is dominant. In the case of neutrally buoyant particles having different sizes the inelasticity induced segregation can compete with the Brazil nut effect (BNE). Reverse Brazil nut effect (RBNE) could be obtained at large inelasticities of the intruder. At intermediate values, BNE and RBNE coexist and large inelastic particles are found both near the bottom and at the top of the system.
Description
© EDP Sciences. We want to thank J.M.R. Parrondo for very useful comments. R.B. is supported by the Spanish Projects MOSAICO, UCM/PR34/07-15859 and the Program Profesores UCM en el Extranjero. The research is supported by Fondecyt grants 1061112, 1070958, and 7070301 and Fondap grant 11980002.
UCM subjects
Unesco subjects
Keywords
Citation
1. A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987) 2. A.P.J. Breu, H.-M. Ensner, C.A. Kruelle, I. Rehberg, Phys. Rev. Lett. 90, 014302 (2003) 3. A. Kudrolli, Rep. Prog. Phys. 67, 209 (2004) 4. D.A. Huerta, J.C. Ruiz-Suárez, Phys. Rev. Lett. 92, 114301 (2004); Erratum: 93, 069901(E) (2004) 5. M. Schröter, S. Ulrich, J. Kreft, J.B. Swift, H.L. Swinney, Phys. Rev. E 74, 011307 (2006) 6. D.V. Kharkar, J.J. McCarthy, J.M. Ottino, Chaos 9, 594 (1999) 7. P.M. Reis, T. Mullin, Phys. Rev. Lett. 89, 244301 (2002) 8. M.P. Ciamarra, A. Coniglio, M. Nicodemi, Phys. Rev. Lett. 94, 188001 (2005) 9. T. Schnautz, R. Brito, C.A. Kruelle, I. Rehberg, Phys. Rev. Lett. 95, 028001 (2005) 10. H.A. Makse, S. Havlin, P.R. King, H.E. Stanley, Nature 386, 379 (1997) 11. K.M. Hill, J. Kakalios, Phys. Rev. E 49, R3610 (1994) 12. D.A. Sanders, M.R. Swift, R.M. Bowley, P.J. King, Phys. Rev. Lett. 93, 208002 (2004) 13. L.T. Lui, R. Michael Swift, R.M. Bowley, P.J. King, Phys. Rev. E 75, 051303 (2007) 14. L. Kondic, R.R. Hartley, S.G.K. Tennakoon, B. Painter, R.P. Behringer, Europhys. Lett. 61, 742 (2003) 15. D. Serero, I. Goldhirsch, S.H. Noskowick, M.-L. Tan, J. Fluid Mech. 554, 237 (2006) 16. J.J. Brey, M.J. Ruiz-Montero, F. Moreno, Phys. Rev. E 73, 031301 (2006) 17. R.D. Wildman, D.J. Parker, Phys. Rev. Lett. 88, 064301 (2002) 18. R.D. Wildman, J.M. Huntley, Phys. Fluids 15, 3090 (2003) 19. K. Feitosa, N. Menon, Phys. Rev. Lett. 88, 198301 (2002) 20. P.E. Krouskop, J. Talbot, Phys. Rev. E 68, 021304 (2003) 21. D. Paolotti, C. Cattuto, U. Marini Bettolo Marconi, A. Puglisi, Granular Matter 5, 75 (2003) 22. V. Garzó, Europhys. Lett. 75, 521 (2006) 23. V. Garzó, Phys. Rev. E 78, 020301 (2008) 24. R. Brito, H. Enríquez, S. Godoy, R. Soto, Phys. Rev. E 77, 061301 (2008) 25. R. Soto, Phys. Rev. E 69, 061305 (2004) 26. E.L. Grossman, T. Zhou, E. Ben-Naim, Phys. Rev. E 55, 4200 (1997) 27. R. Ramírez, R. Soto, Physica A 322, 73 (2003) 28. Ph.A. Martin, J. Piasecki, Europhys. Lett. 46, 613 (1999) 29. A. Barrat, E. Trizac, Granular Matter 4, 57 (2002) 30. B. Meerson, T. Pöschel, Y. Bromberg, Phys. Rev. Lett. 91, 024301 (2003) 31. N. Burtally, P.J. King, M.R. Swift, Science 295, 1877 (2002) 32. N. Burtally, P.J. King, M.R. Swift, M. Leaper, Granular Matter 5, 57 (2003)
Collections