Universidad Complutense de Madrid
E-Prints Complutense

Variations on the Banach-Stone theorem



Último año

Garrido, M. Isabel y Jaramillo Aguado, Jesús Ángel (2002) Variations on the Banach-Stone theorem. Extracta Mathematicae, 17 (3). pp. 351-383. ISSN 0213-8743

Vista previa

URL Oficial: http://www.eweb.unex.es/eweb/extracta/

URLTipo de URL


This paper is based on a series of lectures delivered during a 2001 summer course of the University of Cantabria in Spain.
The central theme is the characterization of a topological space X in terms of the topological-algebraic structure of suitably chosen subspaces of the space C(X) of continuous functions on X . A huge variety of corresponding results is presented. After having discussed the classical Banach-Stone theorem, the authors present several more recent results which characterize a locally compact space X through the isometric/isomorphic structure of particular subspaces of C 0 (X) , the space of continuous functions on X which vanish at infinity. Another type of results allows to recover a complete metric space from spaces of bounded uniformly continuous functions, or of Lipschitz continuous functions, which take values in particular Banach spaces. Moreover, the paper contains a number of results regarding the characterization of a space X through algebraic properties of appropriate subspaces of C(X) , e.g., certain subalgebras. The problem of when isomorphy of spaces of differentiable functions on Banach manifolds entails isomorphy of the underlying manifolds is discussed in detail. The final chapter is devoted to the problem to decide when, for complete metric spaces X and Y , the existence of an isomorphism between suitable lattices of functions of uniformly continuous functions on X and Y , respectively, entails that X and Y are uniformly homeomorphic (similar for Lipschitz maps).

Tipo de documento:Artículo
Información Adicional:

IV Curso Espacios de Banach y Operadores. Laredo, Agosto de 2001.

Palabras clave:Function space; Linear metric structure; Uniform structure; Lipschitz structure
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Ciencias > Matemáticas > Topología
Código ID:21378
Depositado:14 May 2013 15:48
Última Modificación:12 Dic 2018 15:13

Descargas en el último año

Sólo personal del repositorio: página de control del artículo