Publication:
Msb2 shedding protects Candida albicans against antimicrobial peptides

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-02-02
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Leah E. Cowen, University of Toronto, Canada
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.
Description
Keywords
Citation
1. Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330: 1768–1773. 2. Jouault T, Sarazin A, Martinez-Esparza M, Fradin C, Sendid B, et al. (2009) Host responses to a versatile commensal: PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans. Cell Microbiol 11: 1007–1015. 3. van der Meer JW, van de Veerdonk FL, Joosten LA, Kullberg BJ, Netea MG (2010) Severe Candida spp. infections: new insights into natural immunity. Int J Antimicrob Agents 36 Suppl 2: S58–S62. 4. Zipfel PF (2009) Complement and immune defense: from innate immunity to human diseases. Immunol Lett 126: 1–7. 5. Zhu W, Filler SG (2010) Interactions of Candida albicans with epithelial cells. Cell Microbiol 12: 273–282. 6. Ernst JF, Pla J (2011) Signaling the glycoshield: maintenance of the Candida albicans cell wall. Int J Med Microbiol 301: 378–383. 7. Navarro-Garcı´a F, Sa´nchez M, Pla J, Nombela C (1995) Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 15: 2197–2206. 8. Navarro-Garcı´a F, Eisman B, Fiuza SM, Nombela C, Pla J (2005) The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans. Microbiology 151: 2737–2749. 9. Roma´n E, Cottier F, Ernst JF, Pla J (2009) Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans. Eukaryot Cell 8: 1235–1249. 10. Cantero PD, Ernst JF (2011) Damage to the glycoshield activates PMT-directed O-mannosylation via the Msb2-Cek1 pathway in Candida albicans. Mol Microbiol 80: 715–725. 11. Diez-Orejas R, Molero G, Navarro-Garcı´a F, Pla J, Nombela C, et al. (1997) Reduced virulence of Candida albicans MKC1 mutants: a role for mitogenactivated protein kinase in pathogenesis. Infect Immun 65: 833–837. 12. Csank C, Schro¨ppel K, Leberer E, Harcus D, Mohamed O, et al. (1998) Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66: 2713–2721. 13. Cullen PJ, Sabbagh Jr. W, Graham E, Irick MM, van Olden EK, et al. (2004) A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev 18: 1695–1708. 14. Lanver D, Mendoza-Mendoza A, Brachmann A, Kahmann R (2010) Sho1 and Msb2-related protein regulate appressorium development in the smut fungus Ustilago maydis. Plant Cell 22: 2085–2101. 15. Liu W, Zhou X, Li G, Li L, Kong L, et al. (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7: e1001261. 16. Pe´rez-Nadales E, Di Pietro A (2011) The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum. Plant Cell 23: 1171–1185. 17. Vadaie N, Dionne H, Akajagbor DS, Nickerson SR, Krysan DJ, et al. (2008) Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. J Cell Biol 181: 1073–1081. 18. Cullen PJ (2007) Signaling mucins: the new kids on the MAPK block. Crit Rev Eukaryot Gene Expr 17: 241–257. 19. Du¨ rr M, Peschel A (2002) Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect Immun 70: 6515–6517. 20. Peschel A, Sahl H-G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nature Rev Microbiol 4: 529–536. 21. Oudhoff MJ, Blaauboer ME, Nazmi K, Scheres N, Bolscher JG, et al. (2010) The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biol Chem 391: 541–548. 22. Nijnik A, Hancock REW (2009) The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 16: 41–47. 23. Mochon AB, Liu H (2008) The antimicrobial peptide histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm. PLoS Pathog 4: e1000190. 24. den Hertog AL, van Marle J, van Veen HA, Van’t Hof W, Bolscher JG, et al. (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388: 689–695. 25. den Hertog AL, van Marle J, Veerman ECI, Valentijn-Benz M, Nazmi K, et al. (2006) The human cathelicidin peptide LL-37 and trucated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol Chem 387: 1495–1502. 26. Helmerhorst EJ, Breeuwer P, van’t Hof W, Walgreen-Weterings E, Oomen LC, et al. (1999) The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274: 7286–7291. 27. Prill SK, Klinkert B, Timpel C, Gale CA, Schro¨ppel K, et al. (2005) PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance. Mol Microbiol 55: 546–60. 28. Cantero PD, Lengsfeld C, Prill SK, Subanovic´ M, Roma´n E, et al. (2007) Transcriptional and physiological adaptation to defective protein-O-mannosylation in Candida albicans. Mol Microbiol 64: 1115–1128. 29. Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, et al. (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281: 688–694 30. Karunanithi S, Vadaie N, Chavel CA, Birkaya B, Joshi J, et al. (2010) Shedding of the mucin-like flocculin Flo11p reveals a new aspect of fungal adhesion regulation. Curr Biol 20: 1389–1395. 31. Tsai PW, Yang CY, Chang HT, Lan CY (2011) Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One 6: e17755. 32. Veerman EC, Valentijn-Benz M, Nazmi K, Ruissen AL, Walgreen-Weterings E, et al. (2007) Energy depletion protects Candida albicans against antimicrobial peptides by rigidifying its cell membrane. J Biol Chem 282: 18831–18841. 33. Jang WS, Bajwa JS, Sun JN, Edgerton M (2010) Salivary histatin 5 internalization by translocation, but not endocytosis, is required for fungicidal activity in Candida albicans. Mol Microbiol 77: 354–370. 34. Kumamoto CA, Pierce JV (2011) Immunosensing during colonization by Candida albicans: does it take a village to colonize the intestine? Trends Microbiol 19: 263–267. 35. Kumamoto CA (2011) Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol 14: 386–391. 36. Munro CA, Selvaggini S, de Bruijn I, Walker L, Lenardon MD, et al. (2007) The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol 63: 1399–1413. 37. Tatebayashi K, Tanaka K, Yang H-Y, Yamamoto K, Matsushita Y, et al. (2007) Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branc of yeast HOG pathway. EMBO J 26: 3521–3533. 38. Yang H-Y, Tatebayashi K, Yamamoto K, Saito H (2008) Glycosylation defects activate filamentous growth Kss1 MAPK and inhibit osmoregulatory Hog1 MAPK. EMBO J 28: 1380–1391. 39. Sorgo AG, Heilmann CJ, Dekker HL, Brul S, de Koster CG, et al. (2010) Mass spectrometric analysis of the secretome of Candida albicans. Yeast 27: 661–672. 40. Carson DD (2008) The cytoplasmic tail of MUC1: a very busy place. Sci Signal 1: pe35. 41. Akerey B, Le-Lay C, Fliss I, Subirade M, Rouabhia M (2009) In vitro efficacy of nisin Z against Candida albicans adhesion and transition following contact with normal human gingival cells. J Appl Microbiol 107: 1298–1307. 42. Ruissen AL, Groenink J, Krijtenberg P, Walgreen-Weterings E, van ’t Hof W, et al. (2003) Internalisation and degradation of histatin 5 by Candida albicans. Biol Chem 384: 183–190. 43. Meiller TF, Hube B, Schild L, Shirtliff ME, Scheper MA, et al. (2009) A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One 4: e5039. 44. Frick IM, Akesson P, Rasmussen M, Schmidtchen A, Bjo¨rck L (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278: 16561–1656. 45. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, et al. (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172: 1169–1176. 46. Frick I-M, Karlsson C, Mo¨rgelin M, Olin AI, Janjusevic R, et al. (2008) Identification of a novel protein promoting the colonization and survival of Finegoldia magna, a bacterial commensal and opportunistic pathogen. Mol Microbiol 70: 695–708. 47. Scott A, Weldon S, Buchanan PJ, Schock B, Ernst RK, et al. (2011) Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS One 6: e26525. 48. Foschiatti M, Cescutti P, Tossi A, Rizzo R (2009) Inhibition of cathelicidin activity by bacterial exopolysaccharides. Mol Microbiol 72: 1137–1146. 49. Baranska-Ryback W, Sonesson A, Nowicki R, Schmidtchen A (2006) Glycosaminoglycans inibit the antibacterial activity of LL-37 in biological fluids. J Antimicrob Chemother 57: 260–265. 50. Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33: 151–208. 51. Argimo´n S, Fanning S, Blankenship JR, Mitchell AP (2011) Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3. Eukaryot Cell 10: 272–275. 52. Cheetham J, Smith DA, da Silva Dantas A, Doris KS, Patterson MJ, et al. (2007) A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Mol Biol Cell 18: 4603–4614. 53. Luo S, Poltermann S, Kunert A, Rupp S, Zipfel PF (2009) Immune evasion of the human pathogenic yeast Candida albicans: Pra1 is a Factor H, FHL-1 and plasminogen binding surface protein. Mol Immunol 47: 541–550. 54. Orchard MG, Neuss JC, Galley CM, Carr A, Porter DW, et al. (2004) Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 14: 3975–3978. 55. Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717–728. 56. Newport G, Agabian N (1997) KEX2 influences Candida albicans proteinase secretion and hyphal formation. J Biol Chem 272: 28954–28961.
Collections