Universidad Complutense de Madrid
E-Prints Complutense

Direct numerical simulation of vertical particulate channel flow in the turbulent regime

Impacto

Downloads

Downloads per month over past year

Uhlmann, Markus and Pinelli, Alfredo (2010) Direct numerical simulation of vertical particulate channel flow in the turbulent regime. In Proceedings of the 20th International Conference on Fluidized Bed Combustion. Springer, pp. 83-96. ISBN 978-3-642-02681-2


URLURL Type
http://www.springer.com/Publisher


Abstract

We have conducted a DNS study of dilute turbulent particulate flow in a vertical plane channel, considering up to 8192 finite-size rigid particles with numerically resolved phase interfaces. The particle diameter corresponds to approximately 9 wall units and their terminal Reynolds number is set to 136. The fluid flow with bulk Reynolds number 2700 is directed upward, which maintains the particles suspended upon average. Two different density ratios were simulated, varying by a factor of 4.5. The corresponding Stokes numbers of the two particles were O(10) in the near-wall region and O(1) in the outer flow. We have observed the formation of large-scale elongated streak-like structures with streamwise dimensions of the order of 8 channel half-widths and cross-stream dimensions of the order of one half-width. At the same time, we have found no evidence of significant formation of particle clusters, which suggests that the large structures are due to an mtxinsic instability of the flow, triggered by the presence of the particles. It was found that the mean flow velocity profile tends towards a concave shape, and the turbulence intensity as well as the normal stress anisotropy are strongly increased. The effect of varying the Stokes number while keeping the buoyancy, particle size and volume fraction constant was relatively weak. More details about part of this work can be found in (2008).


Item Type:Book Section
Uncontrolled Keywords:particulate flow, turbulence, channel flow, DNS, immersed boundary method
Subjects:Sciences > Physics
ID Code:21948
Deposited On:18 Jun 2013 09:13
Last Modified:12 Dec 2018 15:07

Origin of downloads

Repository Staff Only: item control page