Publication:
Design concepts for the Cherenkov telescope array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-12
Authors
Bernardino Santos, Teodoro
Hassan, Tarek
Mirabal Barrios, Néstor
Vegas Azcárate, Ignacio
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Description
We gratefully acknowledge financial support from the following agencies and organisations: Ministerio de Ciencia, Tecnologia e Innovacion Productiva (MinCyT), Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) Argentina; State Committee of Science of Armenia; Ministry for Research, CNRS-INSU, CNRS-IN2P3 and CEA, France; Max Planck Society, BMBF, DESY, Helmholtz Association, Germany; MIUR, Italy; Netherlands Research School for Astronomy (NOVA), Netherlands Organization for Scientific Research (NWO); Ministry of Science and Higher Education and the National Centre for Research and Development, Poland; MICINN support through the National R+D+I, CDTI funding plans and the CPAN and MultiDark Consolider-Ingenio 2010 programme, Spain. Swedish Research Council, Royal Swedish Academy of Sciences financed, Sweden; Swiss National Science Foundation (SNSF), Switzerland; Leverhulme Trust, Royal Society, Science and Technologies Facilities Council, Durham University, UK; National Science Foundation, Department of Energy, Argonne National Laboratory, University of California, University of Chicago, Iowa State University, Institute for Nuclear and Particle Astrophysics (INPAC-MRPI program), Washington University McDonnell Center for the Space Sciences, USA.
Keywords
Citation
1. See, e.g.,Aharonian, F.A.: The H.E.S.S. survey of the inner galaxy in very high energy gamma rays. Astrophys. J. 636, 777 (2006) (and subsequent presentations in conferences). 2. Barrau, A., et al.: The CAT imaging telescope for very-high-energy gamma-ray astronomy. NIMPA 416, 278 (1998). 3. See, e.g., Aharonian, F.A.: The energy spectrum of TEV gamma rays from the Crab Nebula as measured by the HEGRA system of imaging air cerenkov telescopes. Astrophys. J. 539, 317 (2000). 4. Aharonian, F.A., Völk, H.J., Horns, D. (eds.): Proc. 2nd Int. Meeting on High Energy Gamma-Ray Astronomy Heidelberg (2004). AIP Conference Proceedings, vol. 745 (2004). 5. Aharonian, F.A., Hofmann, W., Rieger, F. (eds.): Proc. 4th Int. Meeting on High Energy Gamma-Ray Astronomy, Heidelberg (2008). AIP Conference Proceedings, vol. 1085 (2008). 6. Hinton, J.A., Hofmann, W.: Teraelectronvolt astronomy. Annu. Rev. Astron. Astrophys. 47, 523 (2009). 7. Aharonian, F.A., et al.: High energy astrophysics with ground-based gamma ray detectors. Rep. Prog. Phys. 71, 096901 (2008). 8. Buckley, J., et al.: The Status and future of ground-based TeV gamma-ray astronomy. A White Paper prepared for the division of Astrophysics of the American physical society, AGIS White Paper. arXiv:0810.0444v1. 9. 2nd Fermi Symposium, Washington, Capitol Hill, eConf Proceedings C091122. http://www.slac.stanford.edu/econf/C0911022/ (2009). 10. Reynolds, S.P.: Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89 (2008). 11. Malkov,M.A., Drury, L.O’C.: Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429 (2001). 12. Aharonian, F.A., Atoyan, A.M.: On the emissivity of π^(0)-decay gamma radiation in the vicinity of accelerators of galactic cosmic rays. Astron. Astrophys. 309, 917 (1996). 13. Gabici, S., Aharonian, F.A., Blasi, P.: Gamma ray signatures of ultra high energy cosmic ray accelerators: electromagnetic cascade versus synchrotron radiation of secondary electrons. Astrophys. Space Sci. 309, 365 (2007). 14. 31st ICRC, Łódź, Poland. http://icrc2009.uni.lodz.pl/ (2009). 15. Aharonian, F.A., et al.: Energy dependent γ-ray morphology in the pulsar wind nebula HESS J1825-137. Astron. Astrophys. 460, 365 (2006). 16. Dalton, M., et al.: Presentation at TeV Particle Astrophysics 2010, Paris (2010). 17. Aharonian, F.A., et al.: First detection of a VHE gamma-ray spectral maximum from a cosmic source: HESS discovery of the Vela X nebula. Astron. Astrophys. 448, L43 (2006). 18. Gaensler, B.M., Slane, P.O.: The evolution and structure of pulsar wind nebulae. Annu. Rev. Astron. Astrophys. 44, 17 (2006). 19. de Jager, O.C., Djannati-Atai, A.: In: Becker, W. (ed.) Springer Lecture Notes on “Neutron Stars and Pulsars: 40 Years After Their Discovery”. arXiv:0803.0116v1 (2008). 20. Aharonian, F.A., et al.: Very high energy gamma rays from the direction of Sagittarius A∗. Astron. Astrophys. 425, L13 (2004). 21. Albert, J., et al.: Observation of gamma rays from the galactic center with the MAGIC telescope. Astrophys. J. 638 (2006) L101 638, L101 (2006). 22. Zhang, J.L., Bi, X.J., Hu, H.B.: Very high energy γ ray absorption by the galactic interstellar radiation field. Astron. Astrophys. 449, 641 (2006). 23. Abdo, A., et al.: Fermi LAT Observations of LS I +61’303: First Detection of an Orbital Modulation in GeV Gamma Rays. Astrophys. J. 701, L123 (2009). 24. Fender, R.: Jets from X-ray binaries. In: Lewin, W.H.G., van der Klis, M. (eds.) Compact Stellar X-Ray Sources. Cambridge University Press, Cambridge (2003). 25. Levinson, A.: High-energy aspects of astrophysical jets. Int. J. Mod. Phys. A21, 6015 (2006). 26. Butt, Y.: Beyond the myth of the supernova-remnant origin of cosmic rays. Nature 460, 701 (2009). 27. Marti, J.: Proc. High Energy Phenomena in Massive Stars. University of Jaen. ASP Conference Series, vol. 422. ISBN: 978-1-58381-724-7 (2010). 28. Aliu, E., et al.: Science 322, 1222 (2009). 29. Rea, N., Torres, D.F. (eds.): Proc. 1st Session of the Sant Cugat Forum of Astrophysics: ICREA International Workshop on The High-Energy Emission from Pulsars and Their Systems. Springer. ISSN:1570-6591 (2010). 30. Jones, T.W., O’Dell, S.L., Stein, W.A.: Physics of compact nonthermal sources. Theory of radiation rocesses. Astrophys. J. 188, 353 (1974). 31. Pian, E., et al.: BeppoSAX observations of unprecedented synchrotron activity in the BL lacertae object markarian 501. Astrophys. J. 492, L17 (1998). 32. Kino, M., Takahara, F., Kusunose, M.: Energetics of TeV blazars and physical constraints on their emission regions. Astrophys. J. 564, 97 (2002). 33. Dermer, C.D., Schlickeiser, R.: Model for the high-energy emission from blazars. Astrophys. J. 416, 458 (1993). 34. Sikora, M., Begelman, M.C., Rees, M.J.: Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars? Astrophys. J. 421, 153 (1994). 35. Mannheim, K., Biermann, P.L., Kruells, W.M.: A novel mechanism for nonthermal X-ray emission. Astron. Astrophys. 251, 723 (1991). 36. Aharonian, F.A.: TeV gamma rays from BL Lac objects due to synchrotron radiation of extremely high energy protons. New Astron. 5, 377 (2000). 37. See, e.g., Aharonian, F.A., et al.: Fast variability of tera-electron volt γ rays from the radio galaxy M87. Science 314, 1424 (2006). 38. See, e.g., Miralda Escude, J.: The dark age of the universe. Science 300, 1904 (2000). 39. Romero, G.E., Aharonian, F.A., Paredes, J.M. (eds.): Proc. High-Energy Phenomena in Relativistic Outflows II, Buenos Aires, Argentina (2009); Int. J. Mod. Phys. D19, 635–1048 (2010); http://hepro2.iar-conicet.gov.ar/talks.html. 40. Krolik, J.H., Pier, E.A.: Relativistic motion in gamma-ray bursts. Astrophys. J. 373, 277 (1991). 41. Fenimore, E.E., Epstein, R.I., Ho, C.: The escape of 100 MeV photons from cosmological gamma-ray bursts. Astron. Astrophys. 97, 59 (1993). 42. Woods, E., Loeb, A.: Empirical constraints on source properties and host galaxies of cosmological gamma-ray bursts. Astrophys. J. 453, 583 (1995). 43. See, e.g., Berger, E., et al.: The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724. Nature 438, 988 (2005). 44. See, e.g., MacFadyen, A.I., Woosley, S.E.: Collapsars: Gamma-ray bursts and explosions in “failed supernovae”, Astrophys. J. 524, 262 (1999). 45. See, e.g., Blasi, P., Amato, E., Caprioli, D.: The maximummomentum of particles accelerated at cosmic ray modified shocks. Mon. Not. R. Astron. Soc. 375, 1471 (2007). 46. Bertone, G. (eds.): Particle Dark Matter. Cambridge University Press, Cambridge. ISBN 13:9780521763684 (2010). 47. Adriani, O., et al.: An anomalous positron abundance in cosmic rays with energies 1.5-100GeV. Nature 458, 607 (2009). 48. Abdo, A., et al.: Measurement of the Cosmic Ray e++e− Spectrum from 20GeV to 1TeV with the Fermi Large Area Telescope. Phys. Rev. Lett. 102, 181101 (2009). 49. Abdo, A., et al.: A limit on the variation of the speed of light arising from quantum gravity effects. Nature 462, 331 (2009). 50. Martínez, M.: Fundamental physics with cosmic gamma rays. J. Phys. Conf. Ser. 171, 012013 (2009). 51. Hanbury Brown, R.: The intensity interferometer. Taylor & Francis, London (1974). 52. Le Bohec, S., Holder, J.: Optical intensity interferometry with atmospheric cerenkov telescope arrays. Astrophys. J. 649, 399 (2006). 53. Herbst, W., Shevchenko, K.S.: A photometric catalog of herbig AE/BE Stars and discussion of the nature and cause of the variations of UX orionis stars. Astron. J. 118, 1043 (1999). 54. Kieda, D.B., Swordy, S.P., Wakely, S.P.: A high resolution method for measuring cosmic ray composition beyond 10 TeV, Astropart. Astropart. Phys. 15, 287 (2001). 55. Aharonian, F.A., et al.: First ground-based measurement of atmospheric Cherenkov light from cosmic rays. Phys. Rev. D 75, 042004 (2007). 56. Hinton, J.: Ground-based gamma-ray astronomy with Cherenkov telescopes. New J. Phys. 11, 055005 (2009). 57. Hinton, J., et al. (H.E.S.S. Collaboration): Background modelling in ground-based Cherenkov astronomy. In: Proc. Towards a Network of Atmospheric Cherenkov Detectors VII, Palaiseau, France, pp. 183–190 (2005). 58. Albert, J., et al. (MAGIC Collaboration): Very High Energy Gamma-Ray Observations During Moonlight and Twilight with the MAGIC Telescope [astro-ph/0702475]. 59. Hofmann, W.: Performance limits for Cherenkov instruments. In: Proc. Towards a Network of Atmospheric Cherenkov Detectors VII, Palaiseau, France [astro-ph/0603076] (2005). 60. Maier, G., Knapp, J.: Cosmic-ray events as background in imaging atmospheric Cherenkov telescopes. Astropart. Phys. 28, 72 [astro-ph/0704.3567] (2007). 61. Amsler, C., et al. (Particle Data Group): Phys. Lett. B 667, 1 (2008) (Section 27.5. Electromagnetic cascades, p. 276). 62. Aharonian, F.A., et al. (H.E.S.S. Collaboration): First ground-based measurement of atmospheric Cherenkov light from cosmic rays. Phys. Rev. D 75, 042004 (2007). 63. Sahakian, V., Aharonian, F., Akhperjanian, A.: Cherenkov light in electron-induced air showers. Astropart. Phys. 25, 233 (2006). 64. Aliu, E., et al.: Improving the performance of the single-dish Cherenkov telescope MAGIC through the use of signal timing. Astropart. Phys. 30, 293 (2009). 65. Schliesser, A., Mirzoyan, R.: Wide-field prime-focus imaging atmospheric Cherenkov telescopes: A systematic study. Astropart. Phys. 24, 382 (2005). 66. Vassiliev, V.V., Fegan, S.J., Brousseau, P.F.: Wide field aplanatic two-mirror telescopes for ground-based γ -ray astronomy. Astropart. Phys. 28, 10 [astro-ph/0612718] (2007). 67. Aharonian, F., et al.: On the optimization of multichannel cameras for imaging atmospheric Cherenkov telescopes. J. Phys. G 21, 985 (1995). 68. de Naurois, M., Rolland, L.: A high performance likelihood reconstruction of γ -rays for imaging atmospheric Cherenkov telescopes. Astropart. Phys. 32, 231 (2009). 69. Albert, J., et al.: FADC signal reconstruction for the MAGIC telescope. Nucl. Instrum. Methods A594, 407 (2008). 70. Mirzoyan, R., et al.: Tagging single muons and other long-flying relativistic charged particles by ultra-fast timing in air Cherenkov telescopes. Astropart. Phys. 25, 342 (2006). 71. Albert, J., et al. (MAGIC Collaboration): FADC signal reconstruction for the MAGIC telescope. Nucl. Instrum. Methods A594, 407–419 [astro-ph/0612385] (2008). 72. Funk, S., et al.: The trigger system of the H.E.S.S. telescope array. Astropart. Phys. 22, 285 [astro-ph0408375] (2004). 73. Heck, D., et al.: CORSIKA: a Monte Carlo code to simulate extensive air showers. Technical Report FZKA 6019, Forschungszentrum Karlsruhe. http://www-ik.fzk.de/corsika/(1998). 74. Kertzman, M.P., Sembroski, G.H.: Computer simulation methods for investigating the detection characteristics of TeV air Cherenkov telescopes. Nucl. Instrum. Methods A343, 629 (1994). 75. Bernlöhr, K.: Simulation of imaging atmospheric Cherenkov telescopes with CORSIKA and sim_telarray. Astropart. Phys. 30, 149 (2008). 76. Guy, J.: Premiers résultats de l’expérience HESS et étude du potentiel de détection de matière noire supersymétrique. Thèse de doctorat, Université Paris V (2003). 77. Majumdar, P., et al.: Monte Carlo simulations for the MAGIC telescope. In: Proc. 29th ICRC, Pune, vol. 5, p. 203 (2005). 78. Hillas, M.: Cerenkov light images of EAS produced by primary gamma. Proc. 19th ICRC, La Jolla, vol. 3, p. 445 (1985). 79. Bock, R.K., Chilingarian, A., Gaug, M., et al.: Methods for multidimensional event classification: a case study using images from a Cherenkov gamma-ray telescope. Nucl. Instrum. Methods A516, 511 (2004). 80. Ohm, S., van Eldik, C., Egberts,K.: γ/hadron separation in very-high-energy γ-ray astronomy using a multivariate analysis method. Astropart. Phys. 31, 383 (2009). 81. Fiasson, A., Dubois, F.,Masbou, J., Lamanna, G., Rosier-Lees, S.: Optimization of multivariate analysis for IACT stereoscopic systems. Astropart. Phys. 34, 25 (2010). 82. Lemoine-Goumard, M., Degrange, B., Tluczykont, M.: Selection and 3D-reconstruction of gamma-ray-induced air showers with a stereoscopic system of atmospheric Cherenkov telescopes. Astropart. Phys. 25, 195 (2006). 83. Cornils, R., et al.: The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes. Part II: mirror alignment and point spread function. Astropart. Phys. 20, 129 (2003). 84. Aharonian, F.A., et al.: An exceptional very high energy gamma-ray flare of PKS 2155-304. Astrophys. J. 664, L71 (2007). 85. Battistoni, G., et al.: The FLUKA code: description and benchmarking. Proc. Hadronic Shower Simulation Workshop 2006, Fermilab 2006. In: Albrow, M., Raja, R. (eds.) AIP Conf. Proc., vol. 896, p. 31 (2007); Fasso, A., et al.: CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773. 86. Bass, S.A., et al.: Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 225 (1998); Bleicher, M., et al.: Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G: Nucl. Part. Phys. 25, 1859 (1999). 87. Kalmykov, N.N., et al.: Quark-gluon string model and EAS simulation problems at ultra-high energies. Nucl. Phys. B (Proc. Suppl.) 52B, 17 (1997). 88. Ostapchenko, S.S.: QGSJET-II: towards reliable description of very high energy hadronic interactions & QGSJET-II: results for extensive air showers. Nucl. Phys. B (Proc. Suppl.) 151 143 and 147 (2006). 89. Ostapchenko, S.S.: Nonlinear screening effects in high energy hadronic interactions. Phys. Rev. D 74, 014026 (2006) 90. Engel, R., et al.: Air shower calculations with the new version of SIBYLL. Proc. 26th ICRC (Salt Lake City), vol. 1, p. 415 (1999). 91. Aharonian, F.A., et al.: Energy Spectrum of Cosmic-Ray Electrons at TeV Energies. Phys. Rev. Lett. 101, 261104 (2008). 92. Bernlöhr, K., et al.: MC Simulation and Layout Studies for a future Cherenkov Telescope Array. Proc. 30th ICRC, Mérida, vol. 3, p. 1469 (2007). 93. Aharonian, F.A., et al.: 5@5 - a 5 GeV energy threshold array of imaging atmospheric Cherenkov telescopes at 5 km altitude. Astropart. Phys. 15, 335 (2001). 94. Konopelko, A.: Altitude effect in Čerenkov light flashes of low energy gamma-ray-induced atmospheric showers. J. Phys. G: Nucl. Part. Phys. 30, 1835 (2004). 95. Funk, S., Hinton, J.A.: Monte-Carlo studies of the angular resolution of a future Cherenkov gamma-ray telescope. Proc. 4th Heidelberg Int. Symposium on High Energy Gamma-Ray Astronomy 2008. 96. Maier, G., et al. (AGIS Collaboration): The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies. Proc. 32nd ICRC, Łódź, Poland. arXiv:0907.5118v1 (2009). 97. Funk, S.: A new population of very high-energy gamma-ray sources detected with H.E.S.S. in the inner part of the Milky Way. PhD Thesis, University of Heidelberg (2005). 98. Schwarzschild, K.: Untersuchungen zur geometrischen Optik II: Theorie der Spiegeltelescope (1905); Abhandlungen der Gesellschaft der Wissenschaften in Göttingen, Bd 4, 2 (1905) 1. 99. Ritchey, G.W.: The Modern Photographic Telescope and the New Astronomical Photography. Comptes Rendus 185, 1024 (1927). 100. Davies, J.M., Cotton, E.S.: Design of the quartermaster solar furnace. J. Sol. Energy Sci. Eng. 1, 16 (1957). 101. Bernlöhr, K., et al.: The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes. Part I: layout and components of the system. Astropart. Phys. 20, 111 (2003). 102. Biland, A., et al. (MAGIC Collaboration): The active mirror control of the MAGIC Telescopes. Proc. 30th ICRC Merida, vol. 3, p. 1353 (2007). 103. Doro, M., et al.: The reflective surface of the MAGIC telescope. Nucl. Instrum. Methods A595, 200 (2008). 104. Pareschi, G., et al.: Glass mirrors by cold slumping to cover 100 m2 of the MAGIC II Cherenkov telescope reflecting surface. Proc. SPIE 7018, 70180W (2008). 105. Holder, J., et al.: The first VERITAS telescope. Astropart. Phys. 25, 391 (2006). 106. Cogan, P., for the VERITAS Collaboration: Analysis of flash ADC data with VERITAS. arXiv:0709.4208v2. 107. Punch, M., et al.:GigaHertz analogue memories in ground-based gamma-ray astronomy. AIP Conf. Proc. 515, 373 (2000). 108. Delagnes, E., et al.: A new GHz sampling ASIC for the H.E.S.S.-II front-end electronics. Nucl. Instrum. Methods A567, 21 (2006). 109. Tescaro, D., et al.: The readout system of the MAGIC-II Cherenkov telescope. arXiv:0907.0466. 110. Hermann, G., et al.: A trigger and readout scheme for future Cherenkov Telescope Arrays. Proc. 4th Heidelberg Int. Symposium on High Energy Gamma-Ray Astronomy 2008. arXiv:0812.0762. 111. Aliu, E., et al. (MAGIC Collaboration): Observation of pulsed γ -Rays above 25 GeV from the Crab Pulsar with MAGIC. Science 322, 1221 (2008). 112. Aharonian, F., et al. (H.E.S.S. Collaboration): Calibration of cameras of the H.E.S.S. detector. Astrop. Phys. 22, 109 (2004). 113. Digel, S., et al. for the AGIS Collaboration: Talk at 2009 SLAC Users OrganisationMeeting. http://www-group.slac.stanford.edu/sluo/2009AnnualMeeting/Talks/Tajima.pdf. 114. Hanna, D., et al.: An LED-based flasher system for VERITAS. Nucl. Instrum. Methods A612, 278 (2009). 115. Papayannis, A., Fokitis, E.: Pierre Auger Observatory. Internal Note (1998) GAP 1998-018. 116. U.S. Geological Survey, GTOPO30, http://eros.usgs.gov/products/elevation/gtopo30.html. 117. Cinzano, P., Falchi, F., Elvidge, C.D.: The first World Atlas of the artificial night sky brightness. MNRAS 328, 689 (2001). 118. Erasmus, D.A.: An analysis of cloud cover and water vapor for the ALMA project. www.eso.org/gen-fac/pubs/astclim/espas/radioseeing/ (2002); An analysis and comparison of satellite-observed cloud cover and water vapor at Hanle, India and Yanbajing, Tibet. http://www.saao.ac.za/∼erasmus/Projects/MPIHimalaya/MPIHimalaya_overview.html (2004).
Collections