Publication:
Cosmological and astrophysical limits on brane fluctuations

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We consider a general brane-world model parametrized by the brane tension scale f and the branon mass M. For a low tension compared to the fundamental gravitational scale, we calculate the relic branon abundance and its contribution to the cosmological dark matter. We compare this result with the current observational limits on the total and hot dark matter energy densities and derive the corresponding bounds on f and M. Using the nucleosynthesis bounds on the number of relativistic species, we also set a limit on the number of light branons in terms of the brane tension. Finally, we estimate the bounds coming from the energy loss rate in supernovae explosions due to massive branon emission.
Description
©2003 The American Physical Society
Unesco subjects
Keywords
Citation
[1] D.N. Spergel et al., Astrophys. J., Suppl. Ser. 148, 175 (2003). [2] V. Barger, J.P. Kneller, H.S. Lee, D. Marfatia, and G. Steigman, Phys. Lett. B 566, 8 (2003); A. Pierce and H. Murayama, hep-ph/0302131; S. Hannestad, J. Cosmol. Astropart. Phys. 05, 004 (2003). [3] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); Phys. Rev. D 59, 086004 (1999); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998). [4] D. Langlois, in Proceedings of YITP Workshop: Braneworld: Dynamics of Space-time Boundary, Kyoto, Japan, 2002, hep-th/0209261. [5] T. Multamaki and I. Vilja, Phys. Lett. B 559, 1 (2003). [6] R. Sundrum, Phys. Rev. D 59, 085009 (1999). [7] A. Dobado and A.L. Maroto, Nucl. Phys. B592, 203 (2001). [8] M. Bando, T. Kugo, T. Noguchi, and K. Yoshioka, Phys. Rev. Lett. 83, 3601 (1999). [9] J. Hewett and M. Spiropulu, Annu. Rev. Nucl. Part. Sci. 52, 397 (2002). [10] P. Creminelli and A. Strumia, Nucl. Phys. B596, 125 (2001). [11] J. Alcaraz, J.A.R. Cembranos, A. Dobado, and A.L. Maroto, Phys. Rev. D 67, 075010 (2003). [12] T. Kugo and K. Yoshioka, Nucl. Phys. B594, 301 (2001). [13] J.A.R. Cembranos, A. Dobado, and A.L. Maroto, Phys. Rev. Lett. 90, 241301 (2003). [14] J.A.R. Cembranos, A. Dobado, and A.L. Maroto, Phys. Rev. D 65, 026005 (2002). [15] A.A. Andrianov, V.A. Andrianov, P. Giacconi, and R. Soldati, J. High Energy Phys. 07, 063 (2003). [16] R. Contino, L. Pilo, R. Rattazzi, and A. Strumia, J. High Energy Phys. 06, 005 (2001). [17] E.W. Kolb and M.S. Turner, The Early Universe (Addison-Wesley, Reading, MA, 1990). [18] M. Srednicki, R. Watkins, and K.A. Olive, Nucl. Phys. B310, 693 (1988); P. Gondolo and G. Gelmini, ibid. B360, 145 (1991). [19] K.N. Abazajian, Astropart. Phys. 19, 303 (2003). [20] R.H. Cyburt, B.D. Fields, and K.A. Olive, Phys. Lett. B 567, 227 (2003). [21] K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987). [22] R.M. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987).
Collections