Universidad Complutense de Madrid
E-Prints Complutense

On a remarkable polyhedron geometrizing the figure eight knot cone manifold

Impacto

Descargas

Último año



Hilden, Hugh Michael y Lozano Imízcoz, María Teresa y Montesinos Amilibia, José María (1995) On a remarkable polyhedron geometrizing the figure eight knot cone manifold. Journal of Mathematical Sciences. The University of Tokyo, 2 (3). pp. 501-561. ISSN 1340-5705

[img] PDF
Restringido a Sólo personal autorizado del repositorio

401kB

URL Oficial: http://journal.ms.u-tokyo.ac.jp/


URLTipo de URL
http://journal.ms.u-tokyo.ac.jp/Editorial


Resumen

The authors define a one-parameter family of polyhedra P(a), 0<a≤5−25√−−−−−−−√, in three-dimensional spaces of constant curvature −∞<k(a)≤1. Identifying faces of P(a) in pairs by isometries gives rise to cone manifolds M(a). For example, k=−1 when a=13−−√, and M gives the hyperbolic structure on the complement in S3 of the figure-eight knot K, k=0 when a=12−−√, and M gives the Euclidean structure on the orbifold which results from (3,0)-surgery on K, while k=1 when a=5−25√−−−−−−−√, and M gives the spherical structure on the orbifold which results from (2,0)-surgery on K. M(0) is a degenerate hyperbolic structure on the torus bundle B over S1 which results from (0,1)-surgery on K (let Σ⊂B denote the core circle of the surgery). The other M(a) interpolate between these, and after rescaling, as a increases, give hyperbolic structures on B, singular along Σ, with cone angles ranging from 2π to zero, then hyperbolic [resp. spherical] structures on S3, singular along K, with cone angles ranging from zero to 2π/3 [resp. 2π/3 to π]. Elementary formulas are derived for the volumes of the (rescaled) cone manifolds, the lengths of the (rescaled) singular sets, and the cone angles, as functions of a. Also, the phenomenon of "spontaneous surgery'' at a=13−−√ is linked to a combinatorial change in P(a).


Tipo de documento:Artículo
Palabras clave:Dirichlet domain; geometric structure; space of constant curvature; 3-manifolds; geometric cone-manifolds; singular set; figure eight knot
Materias:Ciencias > Matemáticas > Geometría diferencial
Ciencias > Matemáticas > Geometria algebraica
Ciencias > Matemáticas > Topología
Código ID:22199
Depositado:03 Jul 2013 17:28
Última Modificación:12 Dic 2018 15:13

Descargas en el último año

Sólo personal del repositorio: página de control del artículo