ESTUDIO DE ADICIONES DE BISMUTO EN ALEACIONES ZINC-ALUMINIO

TESIS DOCTORAL:

Mª ISABEL LASANTA CARRASCO

BAJO LA DIRECCIÓN DE:

F. J. PÉREZ TRUJILLO
M. P. HIERRO DE BENGÖA

Madrid, 2013

©María Isabel Lasanta Carrasco, 2013
ESTUDIO DE ADICIONES DE BISMUTO
EN ALEACIONES ZINC-ALUMINIO

TESIS DOCTORAL

Mª Isabel Lasanta Carrasco.
ESTUDIO DE ADICIONES DE BISMUTO
EN ALEACIONES ZINC-ALUMINIO

TESIS DOCTORAL

Directores
Profesor F. J. Pérez Trujillo
Profesora M. P. Hierro de Bengoa

Mª Isabel Lasanta Carrasco.

2013
AGRADECIMIENTOS

Agradezco a las profesores Dr. F. Javier Pérez Trujillo y Dra. Mª Pilar Hierro de Bengoa por haberme dado la oportunidad de realizar este trabajo de investigación.

A todos mis compañeros del grupo de investigación de Ingeniería de Superficies por su apoyo y ayuda desinteresada durante estos años.

Y a mi familia por su infinita paciencia y comprensión durante el transcurso de todos estos años de trabajo.
Índice

1. INTRODUCCIÓN ... 1

2. OBJETIVOS ... 6

3. FUNDAMENTO TEÓRICO ... 9
 3.1 Métodos de Análisis Térmicos ... 9
 3.1.1 Terminología .. 12
 3.1.3 Presentación de los datos del análisis térmico .. 14
 3.1.4 Temperatura de calibración de análisis térmicos DTA y DSC 15
 3.1.5 Entalpía de calibración para los análisis térmicos DTA y DSC 16
 3.2 Disposición de los equipos de análisis térmico. Conceptos básicos. 18
 3.3 Equipos estándar para el análisis térmico ... 20
 3.3.1 Equipos Termogravimétricos o Termobalanzas ... 20
 3.3.2 Equipos de análisis térmico diferencial (DTA) y de calorimetría de barrido diferencial (DSC) ... 23
 3.3.2.1 Equipos DTA ... 23
 3.3.2.2 Equipos (DSC) ... 26
 3.4 Efectos de las condiciones experimentales en los análisis térmicos 30
 3.4.1 Velocidad de calentamiento .. 30
 3.4.2 Masa y tamaño de la muestra .. 32
 3.4.3 Atmosfera .. 33
 3.4.4 El portamuestras ... 35
 3.4.5 Empaquetamiento de la muestra ... 36
 3.5 Información obtenida de las curvas de análisis térmico 36
 3.5.1 Descripción física y matemática del DTA ... 40
 3.5.2 Relación entre los picos del DTA y la forma de los diagramas de fase......... 42
 3.6 Aplicaciones de los análisis térmicos diferenciales ... 47
 3.6.2 Determinación de los diagramas de equilibrio de fases 49
 3.6.3 Otras Aplicaciones de los análisis térmicos .. 56
 3.7 Aleación Zinc-Aluminio-Bismuto ... 58
 3.7.1 Aleación Zn-Al ... 58
 3.7.2 Aleación Al-Bi ... 62
 3.7.3 Aleación Zn-Bi .. 63
 3.7.4 Aleación Zn-Al-Bi ... 64

4 DESARROLLO EXPERIMENTAL ... 66
Índice

4.1	Estudio Termodinámico	66
4.2	Estudio microestructural de las aleaciones base	66
4.3	Preparación y caracterización de muestras	68
4.4	Estudio microestructural de las aleaciones base con la adición de bismuto	71
4.5	Análisis térmicos Diferenciales	75

5 RESULTADOS Y DISCUSIÓN

5.1	Simulación termodinámica de la aleación base 20%Zn-80%Al.	80
5.2	Aleaciones 20%Zinc-80%Aluminio. Caracterización del Material Base	85
5.3	Simulación termodinámica de la aleación 20%Zn-80%Al + Adiciones de Bi.	92
5.3.1	20%Zn-80%Al + 10%Bi, caracterización microestructural	99
5.3.2	20%Zn-80%Al + 20%Bi caracterización microestructural	105
5.3.3	20%Zn-80%Al + 30%Bi caracterización microestructural	107
5.3.4	20%Zn-80%Al + 40%Bi caracterización microestructural	108
5.3.5	20%Zn-80%Al + 50%Bi caracterización microestructural	110
5.3.6	20%Zn-80%Al + 60%Bi caracterización microestructural	111
5.4	Simulación termodinámica de la aleación base 40%Zn-60%Al	120
5.5	Aleaciones 40%Zinc-60%Aluminio. Caracterización del Material Base	122
5.6	Simulación termodinámica de la aleación 40%Zn-60%Al + Adiciones de Bi...	128
5.6.1	40%Zn-60%Al + 10%Bi, caracterización microestructural	135
5.6.2	40%Zn-60%Al + 20%Bi, caracterización microestructural	141
5.6.3	40%Zn-60%Al + 30%Bi, caracterización microestructural	143
5.6.4	40%Zn-60%Al + 40%Bi, caracterización microestructural	145
5.6.5	40%Zn-60%Al + 50%Bi, caracterización microestructural	148
5.6.6	40%Zn-60%Al + 60%Bi, caracterización microestructural	150
5.7	Simulación termodinámica de la aleación base 85%Zn-15%Al	163
5.8	Aleaciones 85%Zinc-15%Aluminio. Caracterización Material Base	165
5.9	Simulación termodinámica de la aleación 85%Zn-15%Al + Adiciones de Bi...	170
5.9.1	85%Zn-15%Al + 2%Bi, caracterización microestructural	179
5.9.2	85%Zn-15%Al + 4%Bi, caracterización microestructural	186
5.9.3	85%Zn-15%Al + 6%Bi, caracterización microestructural	188
5.9.4	85%Zn-15%Al + 8%Bi, caracterización microestructural	191
5.9.5	85%Zn-15%Al + 10%Bi, caracterización microestructural	193
5.9.6	85%Zn-15%Al + 12%Bi, caracterización microestructural	195
5.9.7	85%Zn-15%Al + 14%Bi, caracterización microestructural	197
5.9.8 85%Zn-15%Al + 16%Bi, caracterización microestructural................. 199
5.9.9 85%Zn-15%Al + 18%Bi, caracterización microestructural................... 200
5.9.11 85%Zn-15%Al + 30%Bi, caracterización microestructural..................... 205
5.9.12 85%Zn-15%Al + 40%Bi, caracterización microestructural..................... 207
5.9.13 85%Zn-15%Al + 50%Bi, caracterización microestructural..................... 209
5.9.14 85%Zn-15%Al + 60%Bi, caracterización microestructural..................... 211
5.10 Simulación termodinámica de la aleación base 94%Zn-6%Al.................... 222
5.11 Aleaciones 94%Zn-6%Aluminio. Caracterización Material Base................. 224
5.12 Simulación termodinámica de la aleación 94%Zn-6%Al + Adiciones de Bi. ... 229
 5.12.1 94%Zn-6%Al + 2%Bi, caracterización microestructural..................... 237
 5.12.2 94%Zn-6%Al + 4%Bi, caracterización microestructural..................... 242
 5.12.3 94%Zn-6%Al + 6%Bi, caracterización microestructural..................... 245
 5.12.4 94%Zn-6%Al + 8%Bi, caracterización microestructural..................... 249
 5.12.5 94%Zn-6%Al + 10%Bi, caracterización microestructural.................... 253
 5.12.6 94%Zn-6%Al + 12%Bi, caracterización microestructural.................... 256
 5.12.7 94%Zn-6%Al + 14%Bi, caracterización microestructural.................... 258
 5.12.8 94%Zn-6%Al + 16%Bi, caracterización microestructural.................... 262
 5.12.9 94%Zn-6%Al + 18%Bi, caracterización microestructural.................... 266
 5.12.10 94%Zn-6%Al + 20%Bi, caracterización microestructural................... 269
 5.12.12 94%Zn-6%Al + 40%Bi, caracterización microestructural................... 274
 5.12.13 94%Zn-6%Al + 50%Bi, caracterización microestructural................... 276
 5.12.14 94%Zn-6%Al + 60%Bi, caracterización microestructural................... 278
5.13 Simulación termodinámica de la aleación base 96%Zn-4%Al..................... 288
5.14 Aleaciones 96%Zn-4%Aluminio. Caracterización Material Base............... 291
5.15 Simulación termodinámica de la aleación 96%Zn-4%Al + Adiciones de Bi. ... 295
 5.15.1 96%Zn-4%Al + 2%Bi, caracterización microestructural..................... 304
 5.15.2 96%Zn-4%Al + 4%Bi, caracterización microestructural..................... 309
 5.15.3 96%Zn-4%Al + 6%Bi, caracterización microestructural..................... 312
 5.15.4 96%Zn-4%Al + 8%Bi, caracterización microestructural..................... 315
 5.15.5 96%Zn-4%Al + 10%Bi, caracterización microestructural.................... 317
 5.15.6 96%Zn-4%Al + 12%Bi, caracterización microestructural.................... 319
 5.15.7 96%Zn-4%Al + 14%Bi, caracterización microestructural.................... 321
 5.15.8 96%Zn-4%Al + 16%Bi, caracterización microestructural.................... 323
 5.15.9 96%Zn-4%Al + 18%Bi, caracterización microestructural.................... 326
5.15.10 96%Zn-4%Al + 20%Bi, caracterización microestructural.......................... 328
5.15.11 96%Zn-4%Al + 30%Bi, caracterización microestructural.......................... 329
5.15.12 96%Zn-4%Al + 40%Bi, caracterización microestructural.......................... 331
5.15.13 96%Zn-4%Al + 50%Bi, caracterización microestructural.......................... 333
5.15.14 96%Zn-4%Al + 60%Bi, caracterización microestructural.......................... 335

6. CONCLUSIONES ... 349

7. ANEXO .. 353
 7.1 Introduction ... 353
 7.2 Objectives .. 354
 7.3 Results .. 354
 7.4 Conclusions .. 357

8. BIBLIOGRAFÍA ... 359
INTRODUCCIÓN
1. INTRODUCCIÓN

Las aleaciones Zinc-Aluminio (ZA) fueron desarrolladas en la década de los sesenta por las compañías productoras de zinc como alternativas a las fundiciones, hierros maleables y bronce, en un tiempo donde el suministro de cobre escaseaba.

La adición del aluminio al zinc, le proporciona a la aleación, entre otras propiedades, bajo peso y poder anticorrosivo, además aumenta sensiblemente la dureza y la resistencia de la aleación, así como su fluidez, permitiendo la obtención de piezas fundidas de formas complicadas.

La creación de nuevas aleaciones base zinc, especialmente en los países desarrollados, son de un especial interés debido a la variedad de usos que a estas aleaciones se les puede dar, teniendo en cuenta la necesidad de la industria de obtener de ellas una variedad de propiedades necesarias para la fabricación de piezas estructurales. El consumo de esas aleaciones por parte de la industria ha crecido a partir del descubrimiento de nuevas propiedades de ellas, que las ha llevado a ser altamente competitivas, además de tener a su favor el bajo coste de fabricación con relación a otros materiales. Las aleaciones base zinc además de sus excelentes propiedades mecánicas, tienen una gran aptitud para el moldeo, al poseer altísima colabilidad y un bajo punto de fusión, haciéndolas muy aplicables en la fabricación de elementos metálicos de diferentes usos [1].

Las aleaciones zinc-aluminio son versátiles y pueden ser manufacturadas por diferentes técnicas de fundición, también pueden ser elaboradas por técnicas convencionales de forjado, extrusado y laminado. El coste de fabricación de estas aleaciones es competitivo y son utilizadas para la fabricación de componentes presentes en la transmisión y suspensión de los vehículos.

La familia de aleaciones zinc-aluminio proporciona materiales con una excelente combinación de propiedades, mejores resistencias a la temperatura y al desgaste y a la fatiga que otras aleaciones de zinc convencionales [2, 3].

También se han venido utilizando para mejorar la dureza de las superficies, para la fabricación de materiales mediante moldes [4] y como recubrimientos protectores frente a la corrosión de planchas de acero [5-12].
Introducción

En los últimos años ha crecido la demanda en la industria del motor de la producción de piezas de fundición, a las cuales cada vez se les exige que sean más complicadas en términos geométricos. Se exigen materiales cada vez más ligeros y con mejores propiedades que obligan al uso de materiales cada vez más delgados, lo que implica el uso intensificado de aleaciones de metales ligeros. Las dimensiones de las piezas siguen siendo las mismas y cada vez más se les exigen mayores rendimientos que les provocan tensiones crecientes y continuas aproximándolas a sus valores máximos.

Es por tanto el campo automovilístico donde las aleaciones zinc-aluminio encuentran una de sus principales aplicaciones. Las aleaciones zinc-aluminio se encuentran como sustitutos de las planchas de acero en las carrocerías del automóvil. El uso de estas aleaciones permite la reducción de hasta un 47% el peso final del automóvil [13], con el consiguiente ahorro económico, y además de la carrocería, pueden utilizarse para otros componentes del automóvil. A estas aleaciones también se les suele añadir silicio, y sus prestaciones son comparables con las aleaciones tradicionales utilizadas hasta el momento para estas aplicaciones [14].

Otra de las aplicaciones interesantes de las aleaciones zinc-aluminio, dado su carácter plástico que le confieren una elevada ductilidad, es para la fabricación de materiales constituyentes de edificaciones que tienen que soportar seísmos [15], incluso ya se han construido pequeños dispositivos con aleaciones del tipo Zn-22%Al testándose bajo condiciones de terremoto, obteniéndose resultados muy favorables para estas aleaciones [16].

En Europa y norte de América, las aleaciones zinc-aluminio han sido utilizadas para la fabricación de rodamientos y otras piezas sometidas a elevado desgaste [17-23], dado su bajo coeficiente de fricción y elevada resistencia al desgaste.

La adición de un tercer elemento a la aleación binaria compuesta por el zinc y el aluminio, como son el cobre, silicio, magnesio o níquel, implica una mejora en las propiedades tribológicas de dicha aleación. Así, la adición de cobre supuso la creación de las aleaciones denominadas Zamak-3 y Zamak-5, compuestas por un 3-5% en aluminio y un 0,03-1,25%Cu y utilizadas para diversas aplicaciones del tipo tribológicas en la ingeniería.
Otra variedad de las aleaciones zinc-aluminio son las obtenidas con la adición de un 1% de magnesio que hace que las mismas tengan una gran aplicación en la industria automovilística y naval [24, 25].

Otra de las aplicaciones de las aleaciones zinc-aluminio y sin duda más reciente y novedosa es su uso como materiales alternativos al uso del plomo en la fabricación de munición, dada la elevada toxicidad del mismo. Las aleaciones Zinc-Aluminio, pueden ser unas sustitutas ideales para el plomo en estas aplicaciones, de hecho ya existen patentes que las reivindican para ello [26-29], son materiales ODS base zinc-aluminio con la adición de unas partículas de refuerzo que le aumentan la densidad para poder equiparase a las prestaciones que ofrece el plomo en estas aplicaciones.

Como se ha visto, las aleaciones zinc-aluminio tienen multitud de aplicaciones hoy en día y son por tanto, aleaciones interesantes para su investigación, estudio y desarrollo. De acuerdo a los diferentes ejemplos expuestos anteriormente, la adición de un tercer o cuarto elemento metálico a la aleación Zn-Al, puede suponer una mejora sustancial de sus prestaciones frente a determinadas aplicaciones, y de forma general, una mejora de sus propiedades. La adición por tanto del bismuto como tercer elemento a la aleación Zn-Al, supone una nueva aleación con diferentes aplicaciones potenciales para usos industriales e interesante para ser estudiada y desarrollada.

La adición del bismuto a esta aleación centra el objeto del actual trabajo, el cual, va a estar focalizado en la investigación y análisis de las variaciones a nivel microestructural y térmico (temperaturas de fusión, transformaciones invariantes…etc.) que va a provocar la adición del bismuto en la aleación binaria Zn-Al. Como punto de partida para esta investigación, se toma la aleación binaria Zn-Al, para la cual, existe suficiente información disponible publicada como para conocer su diagrama de fases, temperaturas de reacciones invariantes, microestructuras…etc. Estos datos servirán de apoyo y referencia para compararlos con los nuevos datos que se vayan obteniendo para la aleación Zn-Al-Bi.

Para las aleaciones binarias Zn-Bi y Al-Bi, también existe suficiente bibliografía publicada de la que se tomarán también como datos de referencia, los relativos a los puntos de fusión y transformaciones invariantes; en el apartado del fundamento teórico se tratarán con más detalle la información relativa a ambos sistemas binarios junto con el Zn-Al.
A diferencia de los sistemas binarios Zn-Al, Al-Bi y Bi-Zn que se discutirán más adelante, y como tónica general de las aleaciones ternarias, para la compuesta por los elementos zinc, aluminio y bismuto no hay apenas datos publicados. Es una aleación escasamente estudiada, de hecho, sólo se han encontrado publicados dos trabajos de carácter teóricos realizados por los autores Gröbner y Mirkovic [30, 31] sobre esta aleación ternaria en particular y otras aleaciones parecidas formadas por los elementos Al-Sn-Cu [32] y Al-Bi-Cu.

Los trabajos de Gröbner y Mirkovic [30, 31] se basan en cálculos termodinámicos para la obtención teórica de las reacciones invariantes que tienen lugar en el sistema ternario zinc-aluminio-bismuto, y sólo en uno de los trabajos, completan estos cálculos teóricos con la caracterización de cinco aleaciones de composiciones Al₁₃Bi₂Zn₈₅, Al₁₈Bi₂₆Zn₅₆, Al₁₈Bi₃₂Zn₅₀, Al₁₈Bi₅₁Zn₃₁ y Al₁₈Bi₆₈Zn₁₄ mediante ensayos térmicos del tipo DSC y con posterior caracterización mediante microscopía óptica y electrónica de una sola de las cinco aleaciones citadas anteriormente. Por tanto, hay muy poca información acerca del sistema ternario zinc, aluminio y bismuto, sobre todo de su caracterización microestructural, más allá del estudio de la microestructura de la aleación de composición Al₁₈Bi₂₆Zn₅₆ comentada anteriormente.

Por tanto, los datos aportados por Gröbner y Mirkovic [30, 31] servirán como referencia y punto de partida para el desarrollo de todo el trabajo de investigación, tanto para la parte de simulación termodinámica como para las partes de análisis térmico y caracterización microestructural. En definitiva, los resultados experimentales derivados del actual trabajo, totalmente novedosos, servirán para completar la información del sistema ternario Zn-Al-Bi.
OBJETIVOS
2. OBJETIVOS

La caracterización de cualquier aleación metálica es el primer punto de estudio y de gran importancia de cara a su uso en la industria en aquellas aplicaciones donde dicha aleación pueda ser competitiva. En este caso, las aleaciones Zn-Al-Bi, son aleaciones ligeras y de bajo coste y tienen una gran aplicación en la fabricación de muy diversas piezas en el sector automovilístico como materiales sustitutivos de las aleaciones férrreas y no férrreas como los bronce.

El objetivo por tanto de este trabajo es la caracterización de la aleación ternaria compuesta por los elementos del zinc, aluminio y bismuto mediante el uso de técnicas de análisis térmico, DTA, microscopía óptica y microscopía electrónica de barrido, SEM, con el fin de conocer la influencia de la adición del bismuto en las transformaciones invariantes, composiciones y temperaturas que tienen lugar en dicha aleación ternaria, así como los cambios que se puedan producir en la microestructura de dicha aleación y que están directamente relacionados con las propiedades mecánicas de los materiales que los harán apropiados para unas aplicaciones u otras en la industria.

También se utilizarán técnicas de análisis calorimétrico, DSC, para estudiar el flujo de calor asociado a los cambios producidos en las diferentes aleaciones formuladas experimentalmente como consecuencia de las transformaciones producidas en ellas, con el fin de evaluar el efecto de la adición del bismuto en los calores absorbidos o cedidos por las diferentes aleaciones, ya que el conocimiento de estos calores puestos en juego durante los procesos de fusión y solidificación son datos esenciales que se utilizan en la industria de la fundición para la modelización de dichos procesos y para el diseño de moldes.

Para la realización de este estudio, se han escogido cinco composiciones de la aleación binaria formada por el zinc y el aluminio, en concreto, una aleación de composición eutéctica (94%Zn-6%Al), otra aleación de composición hipoeutéctica (85%Zn-15%Al), otra aleación de composición hipereutéctica (96%Zn-4%Al), y otras dos aleaciones de composiciones (20%Zn-80%Al) y (40%Zn-60%Al), y sobre estas aleaciones se han añadido cantidades de bismuto comprendidas entre el 2% y el 60%.
El uso de la simulación termodinámica con Thermo-Calc[188] permitirá conocer de forma teórica el sistema ternario Zn-Al-Bi, en concreto la evolución de la composición de las diferentes fases presentes con la temperatura, las transformaciones invariantes y sus temperaturas, y servirá también para contrastar los datos obtenidos mediante la propia simulación termodinámica con los teóricos presentados por Gröbner y Mirkovic [30, 31] en su trabajo publicado sobre el sistema Zn-Al-Bi y con los datos obtenidos experimentalmente en el actual trabajo, resultado de la caracterización de las diferentes microestructuras de las aleaciones formuladas.
FUNDAMENTO TEÓRICO
3. FUNDAMENTO TEÓRICO

3.1 Métodos de Análisis Térmicos

La definición generalmente aceptada de análisis térmico es que son un grupo de técnicas en las que se mide una propiedad física de una sustancia y/o de sus productos de reacción en función de la temperatura mientras la sustancia se somete a un programa de temperatura controlado. Esta definición de análisis térmico tiene la ventaja que puede ser adaptada para definir todas las técnicas termoanalíticas existentes, añadiendo a la definición alguna palabra [33], como por ejemplo:

- Termogravimetría (TG), es la técnica en la cual la masa de la muestra es monitorizada frente al tiempo o a la temperatura, mientras la temperatura de la muestra es aumentada normalmente de forma lineal con el tiempo y en una atmósfera controlada. Mediante esta técnica se observa la evolución del peso de una muestra frente al tiempo o frente a la temperatura y nos permite evaluar las posibles ganancias o pérdidas de peso que sufre esa muestra, causadas por ejemplo por una deshidratación, descomposición, absorción…etc. El equipo que realiza estos ensayos se llama Termobalanza o Analizador termogravimétrico, y las curvas que se obtienen con esta técnica se llaman curvas termogravimétricas o curvas TG.

- Análisis térmico diferencial (DTA), es una técnica con la que se mide la diferencia de temperatura entre una sustancia y un material de referencia en función de la temperatura cuando la sustancia y el material de referencia se someten a un ciclo de temperatura controlado. Con esta técnica se detectan los fenómenos que se producen en una sustancia a una temperatura determinada, como pueden ser los de fusión y solidificación, fenómenos de descomposición térmica, oxidación…etc. Normalmente, el ciclo de temperatura implica el calentamiento de la muestra y del material de referencia, de tal manera que la temperatura de la muestra aumenta linealmente con el tiempo. La diferencia de temperatura ΔT entre la temperatura de la muestra y la temperatura del material de referencia se controla y se representa en el eje de ordenadas, dando lugar a un termograma diferencial.
• Calorimetría diferencial de barrido (DSC), es la técnica mediante la cual se mide la diferencia de energía entre una sustancia y un material de referencia en función de la temperatura cuando la sustancia y el material de referencia se someten a un ciclo de temperatura controlado. Existen dos modos de operación en la calorimetría diferencial de barrido, la calorimetría de potencia compensada y la calorimetría de flujo de calor.

• Análisis mecánico-dinámico (DMA), es la técnica mediante la cual se mide el módulo dinámico y/o amortiguamiento en función de la temperatura de una sustancia sometida a una carga oscilatoria cuando la sustancia está sometida a un programa de temperatura controlado [34].

El propósito de la realización de medidas de análisis térmico es estudiar los cambios físicos y químicos que ocurren en una muestra o sistema sujeta a un ciclo de temperatura. Esto requiere que el operador interprete los resultados observados en el termograma en términos de posibles procesos reactivos [35].

La propiedad más comúnmente medida es la variación de la masa, pero precediendo a estos experimentos están las técnicas calorimétricas, que proporcionan información concerniente a los cambios de entalpías que tienen lugar en el sistema. El análisis y detección del gas que se desarrolla durante el proceso es otro tema a tener en cuenta.

Otro grupo de estudios son los llamados análisis termomecánicos, que relacionan cambios dimensionales [36] y cambios relacionados con la resistencia de los materiales cuando éstos son sometidos a cambios con la temperatura.

Las técnicas de análisis térmico generalmente se pueden clasificar en tres grandes grupos, dependiendo de la forma en que la propiedad física es registrada:

• Métodos de análisis térmico en los que el valor absoluto de la propiedad puede medirse, por ejemplo la masa.

• Métodos de análisis térmico diferenciales, que miden la diferencia entre alguna propiedad de la muestra, como la temperatura.
Métodos de análisis térmico en los que se registra la velocidad a la que se producen los cambios de la propiedad física con la temperatura. Estos análisis suelen utilizarse para estudios de la cinética de las reacciones químicas.

Se pueden distinguir más de una docena de métodos térmicos, los cuales difieren en las propiedades medidas y en los programas de temperatura. En la tabla 1, se muestra un resumen de las principales técnicas de análisis térmico.

Tabla 1. Clasificación de las técnicas de análisis térmico.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Nombre de método</th>
<th>Abreviación</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Análisis térmico</td>
<td>TA</td>
</tr>
<tr>
<td>Estacionario</td>
<td>Métodos asociados con cambio de masa.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determinación de cambios de masa a P= cte.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determinación de cambios de masa a T= cte.</td>
<td></td>
</tr>
<tr>
<td>Dinámico</td>
<td>Termogravimetría</td>
<td>TG</td>
</tr>
<tr>
<td></td>
<td>Derivada Termogravimetría</td>
<td>DTG</td>
</tr>
<tr>
<td>Volátiles</td>
<td>Detección de gases desarrollados</td>
<td>EGD</td>
</tr>
<tr>
<td></td>
<td>Análisis de gases desarrollados</td>
<td>EGA</td>
</tr>
<tr>
<td>Cambios de Temperatura</td>
<td>Determinación de curvas de calentamiento</td>
<td>DTA</td>
</tr>
<tr>
<td></td>
<td>Curvas de velocidad de calentamiento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curvas inversas de velocidad de calentamiento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Análisis Térmico Diferencial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Derivada del Análisis Térmico diferencial</td>
<td></td>
</tr>
<tr>
<td>Cambios de Entalpía</td>
<td>Calorimetría diferencial de barrido</td>
<td>DSC</td>
</tr>
<tr>
<td>Cambios Dimensionales</td>
<td>Termodilatometría</td>
<td>TMA</td>
</tr>
<tr>
<td></td>
<td>Derivada de la Termodilatometría</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Análisis Termomecánico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Termomecanometría Dinámica.</td>
<td></td>
</tr>
</tbody>
</table>
El análisis de los gases involucrados o desarrollados, **EGA [37, 38]**, es una técnica en la cual la naturaleza y/o la cantidad de gas o vapor formado desde la muestra, es monitorizada frente al tiempo o la temperatura, mientras la temperatura de la muestra es sometida a un programa de temperatura controlado. En esta técnica no hay un único tipo de instrumentación, pero siempre llevará consigo un horno y un analizador o detector de gas. Lo más frecuente es que el gas sea analizado por un espectrómetro de masas y si el gas es simplemente detectado en vez de ser analizado, la técnica se llama análisis de detección de gas **EGD [39, 40]**.

Otras técnicas de análisis térmico que no figuran en la tabla 1 y que son menos conocidas son por ejemplo la termoelectrometría, basada en características eléctricas; la termoptometría basada en características ópticas; la termomagnetometría, basada en características magnéticas…etc.

3.1.1 Terminología

Algunos de los términos más utilizados en los métodos de análisis térmico son los siguientes:

- **Curva.** Este término describe la relación entre la cantidad física y la temperatura o el tiempo en un programa de temperatura controlado. La cantidad física tiene que ser representada en el eje de ordenadas y la temperatura o el tiempo en el eje de abscisas, incrementando de izquierda a derecha.

- **Diferencial.** Este término se refiere a la diferencia entre dos cantidades físicas, por ejemplo la diferencia entre la temperatura de la muestra y la del material de referencia para la técnica de análisis térmico diferencial DTA.

- **Derivada.** La derivada expresa la velocidad del cambio de la cantidad física frente a la temperatura o el tiempo.

- **Subíndices.** En las técnicas de análisis térmicos, no se utilizan dobles subíndices como podría ser T_{SP}. Si el subíndice se refiere a un objeto, debe ir en mayúscula, por ejemplo, m_S se refiere a la masa de la muestra y TR a la temperatura del material de referencia. En cambio, si el subíndice se refiere al fenómeno que esté ocurriendo, debe ir en minúscula, por ejemplo
T_g representa la temperatura de transición vítrea, y T_c la temperatura de cristalización.

- **Velocidad de calentamiento.** Esta puede ser expresada como dT/dt, es decir, la variación de la temperatura con el tiempo, o como la letra griega β en unidades de Kmin$^{-1}$.

3.1.2 Características del análisis térmico

Las características más relevantes de los análisis térmicos son las siguientes.

- La muestra puede ser analizada en un amplio rango de temperaturas usando varios programas de temperaturas y bajo condiciones dinámicas e isotermas. En este punto, es conveniente determinar los parámetros cinéticos para los ensayos realizados bajo condiciones no isotérmicas.
- Cualquier forma física de la muestra puede ser analizada mediante el análisis térmico: sólida, líquida, gel, y en diversas formas, polvo, film, gránulos, fibras, telas, etc.
- Se requiere una cantidad de muestra muy pequeña, 0,1μg-10mg.
- El tiempo requerido para los ensayos oscila entre algunos minutos y algunas horas.
- La atmósfera en los alrededores de la muestra puede ser definida por el usuario.
- Las muestras pueden ser recocidas, envejecidas y su historial térmico puede ser borrado en los equipos de análisis térmico.
- Las técnicas de medición y el manejo de las muestras no tiene dificultad.
- Existen en el mercado una amplia gama de equipos de análisis térmico, en función de las magnitudes que se quieran obtener.

En adición a las ventajas que se acaban de mencionar, hay que tener en cuenta una serie de factores.

- Los datos obtenidos en el análisis térmico son indirectos. Es necesario correlacionarlos con los datos obtenidos por métodos directos como espectroscopía o la observación directa de la morfología con el fin de conocer los procesos moleculares que tengan lugar.
Los experimentos de análisis térmico son llevados a cabo bajo condiciones de no equilibrio.

La sensibilidad y la precisión de las medidas de los cambios físico-químicos es relativamente baja comparada con la sensibilidad de las técnicas espectroscópicas.

3.1.3 Presentación de los datos del análisis térmico

Los datos de los análisis térmicos deben incluir de forma general las siguientes identificaciones:

- El nombre definitivo de todas las sustancias (muestra, sustancia de referencia, diluyente, etc.) y la fórmula empírica o la información equivalente de la composición.
- El origen o la fuente de las sustancias, detallando sus historias, pretratamientos y pureza química.
- Tiene que conocerse muy bien la temperatura del ambiente durante los ensayos, incluyendo la temperatura inicial, final y la velocidad de los cambios producidos en la misma.
- La presión de la atmósfera en la que se encuentra la muestra, también tiene que ser conocida.
- La masa, dimensiones y geometría de la muestra.
- En el eje de abscisas de una curva de análisis térmico tiene que figurar o el tiempo o la temperatura, y tienen que aumentar su valor de izquierda a derecha. En función del tipo de análisis térmico, en el eje de de ordenadas irán unas variable u otras.

Para los análisis del tipo DTA y DSC, además es recomendable añadir las siguientes informaciones:

- Las dimensiones, geometría y el material del portamuestras junto con la forma de cargar las muestras en él, debe conocerse.
- Fijar el método usado para la identificación de los productos intermedios y finales.
- Los tipos de termopares, y su localización en el interior del equipo.
En el eje de ordenadas debe aparecer, o la diferencia de temperatura ΔT, entre la muestra y la sustancia de referencia, o la variación en el flujo de calor expresado como dQ/dt. Se representará preferentemente los picos hacia arriba, cuando se trate de un proceso exotérmico, y los picos hacia abajo cuando el proceso sea endotérmico.

Para los análisis termogravimétricos, TG hay que tener en cuenta además los siguientes puntos:

- El eje de ordenadas debe indicar los cambios de masa producidos, las pérdidas de masa se representarán hacia abajo.
- Si se utiliza la derivada termogravimétrica, debe especificarse el método de obtención de la misma y sus unidades, aunque la instrumentación moderna ya calcula la deriva automáticamente.

Para los análisis termomecánicos TMA, se recomienda conocer:

- Tipo de deformación (tensión, torsión, etc.) las dimensiones, la geometría y los materiales de los elementos de carga.
- A la hora de representar gráficamente, los aumentos en la expansión, elongaciones o extensiones se representarán hacia arriba y los aumentos en la penetración o la deformación en flexión, se representarán hacia abajo.

3.1.4 Temperatura de calibración de análisis térmicos DTA y DSC

Las técnicas de análisis térmico son una clase de métodos térmicos mediante los cuales, se investiga la naturaleza de la muestra en respuesta a un programa de temperatura, por tanto, es necesario aumentar la precisión de las medidas de la temperatura [41].

Las normas básicas para la realización de los ensayos térmicos las marcan la confederación internacional del análisis térmico ICTA, la cual, también propone unos materiales de referencia. Estas normas básicas y materiales de referencia utilizados para los análisis térmicos también han sido adoptados por otras organizaciones internacionales, como son la ISO (International Standards Organization), la IUPAC (International Union for Pure and Applied Chemistry) y la ASTM (American Society for Testing and Materials) [42].
Los materiales de referencia deben mostrar una elevada estabilidad química (el material no debe sufrir cambios durante su almacenaje) y tiene que ser químicamente inerte (el material de referencia no debe afectarse por los materiales empleados en la fabricación del equipo de análisis térmico). Además, estos materiales no deben requerir tratamientos previos y tienen que poder ser calentados en atmósferas normales sin sufrir efectos secundarios. Por último, los materiales de referencia deben poder ser adquiridos en el mercado con una elevada pureza y un precio asequible.

Algunos de los materiales utilizados para la calibración de la temperatura en los equipos de análisis térmicos, se muestran en la tabla 2 [43, 44].

<table>
<thead>
<tr>
<th>Material /Componente</th>
<th>Temperatura de transición (°C)</th>
<th>Material/Componente</th>
<th>Temperatura de transición (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNO₃</td>
<td>127,7</td>
<td>SiO₂</td>
<td>573</td>
</tr>
<tr>
<td>In</td>
<td>157</td>
<td>K₂SO₄</td>
<td>583</td>
</tr>
<tr>
<td>Sn</td>
<td>231,9</td>
<td>K₂CrO₄</td>
<td>665</td>
</tr>
<tr>
<td>KClO₄</td>
<td>299,5</td>
<td>BaCO₃</td>
<td>810</td>
</tr>
<tr>
<td>Ag₂SO₄</td>
<td>430</td>
<td>SrCO₃</td>
<td>925</td>
</tr>
</tbody>
</table>

3.1.5 Entalpía de calibración para los análisis térmicos DTA y DSC

Las áreas de los picos en los termogramas diferenciales, A, dependen de la masa de la muestra, m, de la entalpía ΔH del proceso químico físico y de ciertos factores geométricos. Estas variables están relacionadas por la ecuación:

\[A = +\Delta H m K \quad \text{ec.1} \]

Donde K es la constante de calibración y sus unidades son cm²J⁻¹.

Para determinar esta constante, se requieren estándares con alta pureza y cuyas entalpías de fusión (ΔH_f) sean perfectamente conocidas. El indio es un elemento...
químico cuya entalpía de fusión es de $\Delta H_f = 28,5\text{Jg}^{-1}$ y su punto de fusión de 156,5°C, y se suele usar para este propósito.

Se pesa una cantidad conocida del elemento indio, que puede oscilar entre 5-10 mg y se introduce en un equipo de DTA o de DSC, operando siempre con unas condiciones fijas y preestablecidas. Sobre la base de la superficie del pico, se puede determinar la constante de calibración K (cm^2J^{-1}). Y una vez conocida la constante K, se pueden determinar los valores de entalpía para materiales desconocidos.

En la tabla 3 [45, 46], se muestran los valores de entalpía y temperatura de fusión, perfectamente conocidos, para una serie de materiales de referencia que se utilizan para la calibración de la entalpía.

Tabla 3. Puntos de fusión y entalpías de materiales de referencia para la calibración de la entalpía.

<table>
<thead>
<tr>
<th>Compuesto/Elemento</th>
<th>Punto de Fusión (°C)</th>
<th>Entalpía de fusión (Jg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naftaleno</td>
<td>80,3</td>
<td>149</td>
</tr>
<tr>
<td>Ácido benzoico</td>
<td>122,4</td>
<td>148</td>
</tr>
<tr>
<td>Indio</td>
<td>156,6</td>
<td>28,5</td>
</tr>
<tr>
<td>Estaño</td>
<td>231,9</td>
<td>60,7</td>
</tr>
<tr>
<td>Plomo</td>
<td>327,5</td>
<td>22,6</td>
</tr>
<tr>
<td>Zinc</td>
<td>419,5</td>
<td>113</td>
</tr>
<tr>
<td>Aluminio</td>
<td>660,2</td>
<td>396</td>
</tr>
<tr>
<td>Plata</td>
<td>690,8</td>
<td>105</td>
</tr>
<tr>
<td>Oro</td>
<td>1063</td>
<td>62,8</td>
</tr>
</tbody>
</table>

Otros elementos metálicos que se utilizan como materiales de referencia y que no figuran en la tabla 3 son el Ga, Cd, Bi, Sb, Cu, Ni y Co [47].

Básicamente hay tres métodos aproximados para realizar la medición del área del pico para la obtención de la entalpía: a) cortar el área del pico y pesarla, b) mediante planimetría y c) integrando el área del pico.

Esta última forma es la más precisa y hay que tener en cuenta que los equipos actuales, si están correctamente calibrados con los materiales de referencia adecuados, realizan la integración del equipo automáticamente.
El último punto importante que hay que considerar a la hora de calibrar la entalpía, es utilizar un material de referencia cuyo valor de punto de fusión se encuentre muy cercano a los valores de tempera de trabajo.

3.1.6 Calibración calorimétrica para un equipo DSC

Cuando se determina la variación de calor existente en una muestra durante un proceso determinado mediante un equipo calorímetro de barrido diferencial, dicho calor puede determinarse de acuerdo a la siguiente expresión:

$$
\Delta H = \frac{m}{t} \cdot \left(\frac{dQ}{dt} \right)_{e-f}
$$

Donde ΔH es la variación de entalpía, m la masa de la muestra, t el tiempo y (dQ/dt) la diferencia en el flujo de calor. Los subíndices e y f se refieren a los puntos extrapolados del inicio y final del pico respectivamente.

Teniendo en cuenta la parte izquierda de la ecuación ec.1 como la entalpía de referencia H_{ref} y la parte derecha como la entalpía medida, ambos lados de la ecuación pueden igualarse introduciendo una constante de proporcionalidad K, dando lugar a la ecuación 3.

$$
H_{\text{ref}} = K \cdot \left(\frac{m}{t} \cdot \left(\frac{dQ}{dt} \right)_{e-f} \right)
$$

Mediante la ecuación 4 se obtiene la constante K, que es independiente de la temperatura. Para la calibración puede llevarse a cabo utilizando materiales cuyas entalpías de transición estén perfectamente establecidas [48].

3.2 Disposición de los equipos de análisis térmico. Conceptos básicos.

La configuración general de un equipo de análisis térmico está formada por un sensor que mide la propiedad física a determinar, un horno con atmósfera controlada, un programador de temperatura y un sistema de registro de datos. Estas unidades se esquematizan en el diagrama de la figura 1 [43, 44].
Los equipos modernos de análisis térmico están conectados con un ordenador el cual, supervisa todas las operaciones del equipo de análisis, controla el rango de temperaturas, la velocidad de enfriamiento y calentamiento, el gas de purga y el registro y almacenamiento de los datos experimentales obtenidos. Una opción que se utiliza en la actualidad es conectar a un mismo ordenador varios equipos de análisis térmico.

3.2.1 Programas informáticos para el análisis térmico

Actualmente existen en el mercado una gran variedad de programas informáticos capaces de realizar un gran número de tareas. En la tabla 4 [43, 44], se resumen algunas de ellas en función del tipo de instrumento de análisis térmico.

Tabla 4. Programas informáticos disponibles para el análisis térmico.

<table>
<thead>
<tr>
<th>Tipo de Instrumento de análisis térmico</th>
<th>Función del programa informático</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (DTA, DSC, TG, TMA, DMA)</td>
<td>• Variaciones y amplitud de señales</td>
</tr>
<tr>
<td></td>
<td>• Señal y calibración de la temperatura</td>
</tr>
<tr>
<td></td>
<td>• Registro y almacenamiento de datos</td>
</tr>
<tr>
<td></td>
<td>• Representación y cálculo de las temperaturas de de transición</td>
</tr>
<tr>
<td></td>
<td>• Representación de múltiples curvas</td>
</tr>
<tr>
<td></td>
<td>• Derivada de la curva de análisis térmico</td>
</tr>
<tr>
<td></td>
<td>• Corrección de la línea base</td>
</tr>
</tbody>
</table>
Continuación de la tabla 4:

<table>
<thead>
<tr>
<th>Tipo de Instrumento de análisis térmico</th>
<th>Función del programa informático</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSC</td>
<td>• Representación y cálculo de las transiciones entálpicas.</td>
</tr>
<tr>
<td></td>
<td>• Determinación de la capacidad calorífica.</td>
</tr>
<tr>
<td></td>
<td>• Cálculo de la pureza</td>
</tr>
<tr>
<td></td>
<td>• Cálculo de conversiones de reacciones</td>
</tr>
<tr>
<td></td>
<td>• Modulación de la temperatura</td>
</tr>
<tr>
<td>TG</td>
<td>• Conversión de cambios de masa a cambios de masa en porcentaje.</td>
</tr>
<tr>
<td></td>
<td>• Cálculo de de conversión de reacciones</td>
</tr>
<tr>
<td></td>
<td>• Control de la velocidad de calentamiento en función de los cambios de masa.</td>
</tr>
<tr>
<td>TMA, DMA</td>
<td>• Cálculo de coeficientes térmicos de expansión</td>
</tr>
<tr>
<td></td>
<td>• Representación de la curva tensión–deformación</td>
</tr>
<tr>
<td></td>
<td>• Representación de la curva de fluencia</td>
</tr>
<tr>
<td></td>
<td>• Representación de la curva de estrés-relajación</td>
</tr>
<tr>
<td></td>
<td>• Curva de Arrhenius</td>
</tr>
</tbody>
</table>

3.3 Equipos estándar para el análisis térmico

3.3.1 Equipos Termogravimétricos o Termobalanzas

La termogravimetría es la técnica de análisis térmico mediante la cual, se miden los cambios de masa de una muestra en función de la temperatura. Los procesos químicos como la cristalización y la transición vítrea, no llevan consigo una variación en la masa de la muestra, en cambio, los procesos como la descomposición, sublimación, reducción, desorción, absorción y vaporización, van acompañados de cambios en la masa, que pueden ser medidos mediante el análisis termogravimétrico (TG).
Muchos de los equipos que actualmente se fabrican combinan los análisis TG con los DTA [49, 50]. Estos equipos tienen la ventaja que las condiciones experimentales y el tipo de muestras utilizadas son iguales para ambas técnicas y además, los materiales utilizados como estándares de referencia para las calibraciones, también son los mismos por tanto, ofrecen la posibilidad de realizar los dos ensayos simultáneamente.

Los productos gaseosos que se van produciendo durante el ensayo termogravimétrico (TG), se van analizando mediante equipos acoplados al propio equipo TG. Estos equipos pueden ser espectrómetros de masas TG-MS, espectrómetros de infrarrojo con transformada de Fourier (TG-FTIR) o mediante un cromatógrafo (TG-GC).

Los equipos en los que se realizan los ensayos termogravimétricos se llaman termobalanzas y se componen de una microbalanza electrónica, un horno, un programador de temperatura, un controlador para la atmósfera de trabajo y un equipo que registra todos los datos que se generan durante el ensayo.

En la figura 2 [43, 44], se muestra un esquema de los elementos que componen una termobalanza.

![Figura 2. Diagrama de bloques de una termobalanza genérica [43,44].](image)

Para el componente de la microbalanza, existen muchos diseños en el mercado, como por ejemplo diseño en forma de viga, de viga en voladizo, en forma de muelle o de alambre de torsión.

En cuanto a la bobina del horno de la termobalanza, puede ser de diversos materiales en función de la temperatura máxima a la cual permitan trabajar.
Por ejemplo, si es de platino la termobalanza podrá trabajar hasta temperaturas de 1400°C y si es de rodio, de hasta 1800°C.

El funcionamiento de las termobalanzas se basa en focalizar sobre la muestra el calor generado por el calentador de rayos infrarrojos o una simple bobina mediante un sistema reflector, de esta forma la muestra puede alcanzar en cuestión de minutos temperaturas de hasta 1500°C.

El portamuestras puede tener diferentes ubicaciones en función del tipo de disposición que posea la termobalanza. Puede estar situado debajo, encima o paralelo a la balanza. Existen en una gran variedad de formas y tamaños de los portamuestras llamados también crisoles. Algunos ejemplos de ellos, se muestran en la figura 3 [43, 44].

![Figura 3. Típicos crisoles utilizados en TG. I, plato; II, percha; III, cilíndrico; IV, cesta; V, multiplatos; VI, laberinto; VII, crisol con agujero; VIII, crisol con una malla de tapa; IX, sin crisol [43,44].](image)

La atmósfera de trabajo de las termobalanzas es muy variada: Aire, Ar, Cl₂, H₂, HCN, H₂O, N₂, O₂ y SO₂. El operador tendrá que tener especial cuidado con el manejo de los gases Cl₂, HCN y SO₂. Se recomienda además que el flujo de gas de trabajo sea dinámico.

Para calibrar la temperatura de las termobalanzas se utiliza el punto de curie de los materiales ferromagnéticos. El punto de curie es la temperatura a la cual los materiales ferromagnéticos pasan a ser paramagnéticos, en este momento la fuerza magnética existente pasa a ser cero y en la temobalanza se registra una pérdida de peso aparente [51].
3.3.2 Equipos de análisis térmico diferencial (DTA) y de calorimetría de barrido diferencial (DSC)

3.3.2.1 Equipos DTA

El análisis térmico diferencial es una técnica en la que se mide la diferencia de temperatura entre una sustancia y un material de referencia en función de la temperatura cuando la sustancia y el patrón se someten a un ciclo de temperatura controlado. Normalmente, el ciclo de temperatura implica el calentamiento de la muestra y del material de referencia [52, 53], de tal manera que la temperatura de la muestra aumenta linealmente con el tiempo. La diferencia de temperatura ΔT, entre la temperatura de la muestra y la temperatura de la sustancia de referencia se controla y se representa frente a la temperatura de la muestra para dar un termograma diferencial [54].

En la figura 4 [55] se muestra un esquema del horno de un analizador térmico diferencial

![Esquema de un instrumento típico para análisis térmico diferencial (TC=termopar) [55].](image-url)
Unos pocos miligramos de muestra (S) y de sustancia de referencia inerte (R) se introducen en pequeños crisoles, que pueden ser de platino, aluminio, u otro material. Estos crisoles se colocan encima de unos termopares, uno para la muestra y otro para la referencia, como se observa en la figura 4 y todo este conjunto se sitúa en el interior de un horno calentado eléctricamente.

El material de referencia es una sustancia inerte, tal como la alúmina, el carburo de silicio o bolitas de vidrio.

El potencial de salida E_s del termopar de la muestra pasa a un microordenador que controla la corriente de entrada al horno, de tal manera que, la temperatura de la muestra aumenta linealmente y a una velocidad predeterminada. La señal del termopar de la muestra se convierte también en temperatura, T_s, y se registra entonces como la abscisa del termograma diferencial. La salida a través de los termopares de la muestra y de la referencia ΔE se amplifican y se convierte en la diferencia de temperatura ΔT, que se utiliza como ordenada del termograma.

Generalmente las cámaras de la muestra y de la referencia en un aparato para análisis térmico diferencial están diseñadas para permitir la circulación de un gas inerte, tal como nitrógeno, o un gas reactivo, tal como oxígeno o aire. Algunos sistemas también tienen la capacidad de operar a altas y bajas presiones.

En la figura 5 [55, 56] se muestra un ejemplo de una curva térmica diferencial para un polímero.

Figura 5. Esquema de un termograma diferencial, mostrando los tipos de cambios térmicos encontrados con materiales poliméricos [55].
En la figura 5 se muestra un termograma diferencial obtenido por calentamiento de un polímero en un intervalo de temperaturas suficiente para provocar su total descomposición. El descenso inicial de ΔT, es debido a la transición vítrea, un fenómeno observado inicialmente cuando se calientan la mayoría de los polímeros. La temperatura de transición vítrea T_g, es la temperatura característica a la cual los polímeros amorfos vitrificados se hacen flexibles o parecen de goma debido a que se inicia el movimiento coordinado de los largos segmentos de las moléculas del polímero. Al ser calentado a un acierto temperatura T_g, el polímero pasa de vidrio a goma. Esta transición no implica absorción o desprendimiento de calor, por lo que no da lugar a ningún cambio en la entalpía ($\Delta H = 0$). Sin embargo, la capacidad calorífica de una goma es diferente de la de un vidrio, lo que da lugar a un descenso de la línea base, tal como se muestra en la figura 5. Esta transición no produce ningún pico, ya que el cambio de entalpía es cero.

En el termograma de la figura 5 también se observan dos máximos y un mínimo, todos ellos se llaman picos. Los dos máximos son el resultado de los procesos exotérmicos en los que el calor se desprende de la muestra, provocando que su temperatura aumente; el mínimo llamado fusión, es la consecuencia de un proceso endotérmico en el que el calor es absorbido por el analito. Cuando se calientan hasta una temperatura característica, muchos polímeros amorfos empiezan a cristalizar en forma de microcristales, emitiéndose calor en este proceso. La formación de cristales es la responsable del primer pico exotérmico que se muestra en la figura 5. El área de este pico se hace mayor al disminuir la velocidad de calentamiento, ya que en estas circunstancias tienen tiempo de formar y de crecer más cristales.

El segundo pico de la figura 5 es endotérmico e implica la fusión de los microcristales formados en el proceso exotérmico inicial. El tercer pico es exotérmico y se encuentra solo si el calentamiento se lleva a cabo en presencia de aire o de oxígeno. Este pico es el resultado de la oxidación exotérmica del polímero. El cambio negativo final en la variación de temperatura ΔT es debido a la descomposición endotérmica del polímero para dar lugar a una gran variedad de productos.

Como se ha observado en el termograma diferencial de la figura 5, los picos del análisis térmico diferencial son el resultado tanto de cambios físicos, como de reacciones químicas inducidas por los cambios de temperatura en la muestra [57].
Entre los procesos físicos endotérmicos se incluyen la fusión, la vaporización, la sublimación, la absorción y la desorción [58]. La adsorción y la cristalización [59] son generalmente exotérmicos. Las reacciones químicas pueden ser exotérmicas o endotérmicas. Entre las reacciones endotérmicas se encuentra la deshidratación, la reducción en una atmósfera gaseosa y la descomposición. Las reacciones exotérmicas incluyen la oxidación en aire u oxígeno, la polimerización y las reacciones catalíticas.

3.3.2.2 Equipos (DSC)

Es una técnica térmica en la que se miden las diferencias en la cantidad de calor aportado a una sustancia y a una sustancia de referencia en función de la temperatura de la muestra, cuando las dos están sometidas a un programa de temperatura controlado [60]. La diferencia básica entre la calorimetría de barrido diferencial y el análisis térmico diferencial estriba en que el primero es un método calorimétrico en el que se miden diferencias de energías, por el contrario, en el análisis térmico diferencial se registran diferencias de temperatura. Los programas de temperatura para los dos métodos son similares. La calorimetría de barrido diferencial ha sido hasta ahora el método más ampliamente utilizado de todos los métodos térmicos de análisis [61]

Para obtener los datos en calorimetría de barrido diferencial se utilizan dos tipos de métodos. En la DSC de potencia compensada, la muestra y el material de referencia se calientan por calentadores separados aunque sus temperaturas se mantienen iguales mientras las temperaturas se aumentan (o disminuyen) linealmente.

En la DSC de flujo de calor, se mide la diferencia en cantidad de calor que fluye hacia la muestra y hacia la sustancia de referencia cuando la temperatura de la muestra se aumenta (o disminuye) linealmente. A pesar de que los dos métodos proporcionan la misma información, la instrumentación de los dos es esencialmente diferente.

- **DSC de potencia compensada**

En la figura 6 [55] se muestra un esquema del diseño de un calorímetro de potencia compensada para llevar a cabo medidas de DSC.
El instrumento tiene dos hornos independientes, uno para el calentamiento de la muestra y otro para el calentamiento de la sustancia de referencia. En los modelos comerciales basados en este diseño, los hornos son pequeños, y pesan alrededor de un gramo cada uno, una característica que permite elevadas velocidades de calentamiento, de enfriamiento y de equilibrado.

Los hornos están empotrados en un amplio sumidero de calor de temperatura controlada. Sobre los hornos se encuentran los soportes de la muestra y la de referencia, los cuales, tienen insertados termómetros de resistencia de platino para controlar continuamente la temperatura de los materiales.

Para la obtención de los termogramas diferenciales con el equipo expuesto anteriormente en la figura 6, se utilizan dos circuitos de control, uno para el control de la temperatura promedio y el otro para el control de la temperatura diferencial. En el de la temperatura promedio, el programador proporciona una señal eléctrica que es proporcional a la temperatura promedio deseada de los soportes de la muestra y de la sustancia de referencia en función del tiempo. Esta señal, se compara en un ordenador con el promedio de las señales de los detectores de la muestra y el de la sustancia de referencia empotrados en los soportes de la muestra y el de la referencia. Cualquier diferencia entre la señal del programador y la señal promedio de los sensores de platino, se utiliza para ajustar la temperatura promedio de la muestra y el de la referencia. La temperatura promedio sirve de abscisa del termograma.

En el circuito de temperatura diferencial, las señales de los sensores de resistencia de platino de la muestra y el de la sustancia de referencia, alimentan un amplificador diferencial por medio de un circuito de comparador que determina cuál es mayor. La salida del amplificador ajusta entonces la potencia de entrada de los dos hornos de manera que sus temperaturas se mantengan idénticas. Esto es, durante el
experimento, la muestra y la referencia son isotermas. Una señal que es proporcional a la diferencia en la potencia de entrada a los dos hornos, se transmite al sistema de adquisición de datos. Esta diferencia en la potencia, normalmente en miliwatios y es la información que se representa con más frecuencia en función de la temperatura de la muestra.

➢ DSC de flujo de calor

En la figura 7 [44, 62] se muestra un esquema de una celda de DSC de flujo de calor comercial.

Figura 7. Esquema de una celda de DSC de flujo de calor [44].

El calor fluye tanto hacia la muestra como hacia el material de referencia a través de un disco termoeléctrico de *constantan* calentado eléctricamente.

Los pequeños crisoles de aluminio para colocar la muestra y la sustancia de referencia se colocan sobre plataformas elevadas formadas en el disco de *constantan*. El calor se transfiere a través de los discos hacia la muestra y la sustancia de referencia a través de los dos platillos. La diferencia entre el flujo de calor hacia la muestra y la sustancia de referencia se controla mediante unos termopares de superficie de chromel/constantan formados por la unión entre la plataforma de *constantan* y los discos de chromel sujetos a la parte inferior de la plataforma. Se puede demostrar que la diferencia entre la cantidad de calor que fluye hacia los dos platillos es directamente proporcional a la diferencia en la salida en las dos uniones del termopar.
La temperatura de la muestra se estima por la unión de chromel/alumel colocada debajo del disco de la muestra.

Los experimentos calorimétricos de barrido diferencial se llevan a cabo normalmente en la modalidad de barrido de la temperatura, pero ocasionalmente se encuentran experimentos isotérmicos [45, 55].

DSC modulado

La calorimetría diferencial de barrido modulada (MDSC), a diferencia de los analizadores térmicos convencionales, utiliza dos velocidades de calentamiento simultáneas, una velocidad de calentamiento lineal que brinda información similar al DSC estándar, y una velocidad de calentamiento modulada o sinosoidal que permite medir simultáneamente la capacidad calorífica de la muestra y diferenciar entre los eventos reversibles (dependientes de la capacidad calorífica) [63-69] e irreversibles (dependientes del tiempo y la temperatura) que experimenta la muestra. Algunos ejemplos de eventos que son reversibles son las transiciones vítreas y la temperatura de fusión. Algunos ejemplos de eventos que son irreversibles son la cristalización, relajaciones entálpicas y las reacciones de curado o reticulación [70].

Hoy en día, el desafío de la ingeniería es obtener la información crítica del proceso de diseño para permitir un desarrollo seguro y eficiente del mismo, a la vez que permita su optimización. Durante el período inicial del desarrollo de un nuevo producto, la seguridad es un objetivo primordial que implica conocer los posibles riesgos durante los procesos de producción para hacer de ellos procesos eficientes y seguros. Uno de estos riesgos potenciales son los calores de reacción y los coeficientes de transferencia de calor [71, 72], y mediante las técnicas calorimétricas, DSC es posible obtener estos datos térmicos [73].

La solidificación de las aleaciones es un proceso que tiene multitud de aplicaciones en la industria, como en la tecnología de las fundiciones, crecimiento cristalino, purificación de materiales, procesos de soldadura…etc. Pero en la solidificación de aleaciones están involucrados fenómenos de transporte de calor y masa que no están bien estudiados, establecidos y comprendidos [74].

El calor latente de solidificación es un parámetro fundamental que se utiliza en la modelización de estos procesos de solidificación y en el diseño de los moldes.
A este respecto, existen muy pocos datos bibliográficos acerca de los calores latentes para aleaciones binarias, y menos para las aleaciones ternarias. Muchos de los trabajos encontrados relacionados con este tema son del tipo teórico, en los cuales, se utilizan paquetes de software para la obtención de las propiedades termofísicas y de solidificación. El propio proceso de solidificación requiere conocer datos como la liberación de calor desde el metal o la aleación que esta solidificando hacia el molde que los contiene, y este calor va a depender además de la composición de la propia aleación.

Por tanto, los calores latentes del proceso de fusión es una de las propiedades fundamentales que relacionan propiedades termodinámicas con varios procesos físicos y es un parámetro muy importante para la industria de la fundición Un ejemplo del uso de las técnicas de DSC se ve en el trabajo publicado por W.J.Yao [75] acerca de las aleaciones Co-Si, las cuales desarrollan muchos compuestos intermetálicos que las hace interesantes para aplicaciones electrónicas y magnéticas. Mediante las técnicas DSC evaluaron la influencia del contenido en Si en los calores latentes de fusión de la aleación Co-Si.

Otros ejemplos encontrados en la bibliografía que utilizan las técnicas DSC para la obtención de los calores latentes de fusión son los realizados D.G.R.Sharma [76] acerca de las aleaciones Aluminio-Cobre; el realizado por M. B. Djurdjovic [77] en la serie de aleaciones de aluminio 3XX y el estudio realizado por M.J. Voss [78] en las aleaciones de composición Al-4,5%Cu.

3.4 Efectos de las condiciones experimentales en los análisis térmicos

3.4.1 Velocidad de calentamiento

Los resultados experimentales obtenidos en los análisis térmicos se encuentran fuertemente afectados por la velocidad de calentamiento [79-81]. Los principales efectos que provoca la velocidad de calentamiento se resumen a continuación.

- La velocidad de calentamiento influye en la distribución de la temperatura en el interior de la muestra. En la figura 8 [43, 44, 82] se muestra un ejemplo del gradiente de temperatura existente en un polietileno de baja densidad con un espesor de muestra de 10mm.
Cuando la velocidad de calentamiento es de 2,5°C/min, la diferencia de temperatura entre el interior y el exterior de la muestra es muy pequeña, en cambio se obtiene una diferencia de hasta 10°C cuando la velocidad de calentamiento es de 40°C/min.

Figura 8. Representación de la temperatura de fusión del indio encapsulado entre dos películas de polietileno, en función de la distancia de la muestra a la base del portamuestras, para diferentes velocidades de calentamiento [45].

- Cuando se miden mediante las técnicas de TG, DTA o DSC las reacciones químicas como la descomposición térmica, el utilizar velocidades de calentamiento altas, como por ejemplo de 20°C/min, puede conllevar el desplazamiento de las temperaturas de inicio y final del pico correspondiente a dicha descomposición térmica, a valores mayores de temperatura [83].

- Si la velocidad de calentamiento es alta, las reacciones tienen lugar con mayores velocidades en las regiones de alta temperatura. Se obtienen picos más anchos, menos definidos.

- Cuando se observan múltiples reacciones, se recomienda trabajar con velocidades de calentamiento bajas, de esta forma se observan de forma clara todas las posibles reacciones [84].

- El área de los picos sólo debe cambiar un ±3% cuando se varía la velocidad de calentamiento, Sin embargo, esta tendencia no se cumple cuando se
trabaja con algunos polímeros, ya que en muchos procesos como puede ser la recristalización, ésta va acompañada de procesos de fusión y por tanto, el área del pico no sigue la tendencia anteriormente descrita.

Como norma general, y si no existe algún requerimiento especial, se suele trabajar con velocidades de calentamiento comprendidas entre los 5-10°C/min.

3.4.2 Masa y tamaño de la muestra

Como se puede observar en las curvas de ΔT vs T (°C) de la figura 9 [85], cuanto mayor es la masa de la muestra que se somete al ensayo térmico diferencial, mayor es el pico que se obtiene. Pero un mayor tamaño de pico, implica un retraso en el retorno de la curva correspondiente a la línea base. Este hecho conlleva que si tienen lugar fenómenos muy próximos entre sí en temperatura, se pierda significativamente la señal de los mismos.

![Figura 9. Efecto de la masa de muestra en el tamaño del pico del DTA [85].](image)

La forma de la muestra es otro factor importante a tener en cuenta a la hora de realizar un ensayo térmico [86]. La forma ideal de una muestra sería aquella cuyas dimensiones se ajustaran lo más posible a las dimensiones de la base del crisol que la va a contener en el ensayo térmico. Además, si la muestra se encuentra de forma compacta es mejor que en forma de polvo, para evitar oxidaciones de la misma durante el ensayo, sobre todo para aquellos equipos de análisis térmico que trabajen con críosoles abiertos en contacto con el gas de purga.
3.4.3 Atmósfera

Con el fin de confirmar los procesos físico-químicos que dan lugar a los diferentes procesos térmicos, se suele variar la atmósfera de trabajo. Por ejemplo, una muestra es medida mediante DTA o DSC en atmósfera de aire obteniéndose un pico exotérmico, a continuación esa misma muestra se vuelve a medir pero en atmósfera inerte. El resultado obtenido dependerá del tipo de evento térmico que se esté produciendo en la muestra. De manera que:

- Si el pico exotérmico observado en el ensayo con atmósfera de aire se mantiene sin cambios en el ensayo con atmósfera inerte, el suceso exotérmico será atribuido a una cristalización o aun curado.
- Si el pico cambia de exotérmico a endotérmico, el evento térmico que se está produciendo es una reacción de descomposición.
- Y por último, si el pico exotérmico desaparece o se hace más pequeño, se estaría produciendo una reacción oxidativa del metal.

En los polímeros orgánicos, un cambio en la atmósfera de trabajo, permite distinguir los procesos de descomposición térmica de los procesos de descomposición termo-oxidativa.

En las reacciones en las que se produzcan desprendimientos gaseosos, si éstos no se van eliminando, la reacción evolucionará hacia el lado de mayor temperatura. Por ejemplo, el vapor de agua inhibe la reacción de deshidratación del CaSO₄·2H₂O, y la temperatura de reacción se incrementa en comparación con los resultados obtenidos en aire. En la figura 10 [43, 44] se representa el ensayo térmico diferencial (DTA) para una muestra de CaSO₄·2H₂O en dos atmósferas diferentes, en aire y en vapor de agua.

![Figura 10. Curvas DTA para CaSO₄·2H₂O en (I) aire y (II) en vapor de agua [43].](image-url)
En la figura 10 se observa que la muestra ensayada en presencia de vapor de agua presenta una reacción de deshidratación con doble pico, si la comparamos con la atmósfera de aire. La descomposición térmica del CaSO₄·2H₂O depende por tanto del tipo de atmósfera de trabajo, siendo mayor la velocidad de descomposición en atmósfera de He, seguida de la de N₂ y Ar, de acuerdo con la conductividad térmica de estos gases.

Por tanto, los principales factores relativos a la atmósfera de trabajo que hay que tener en cuenta son:

a) **Atmósfera estática o dinámica.** Bajo condiciones estáticas, los productos gaseosos no pueden ser eliminados rápidamente de los alrededores de la muestra que está siendo ensayada. Esto conlleva a un aumento de la presión parcial de los productos y por tanto, un aumento en la temperatura. Bajo condiciones dinámicas, los gases generados pueden ser eliminados continuamente y la presión parcial de los productos disminuye.

b) **Tipo de atmósfera.** Los gases empleados en los ensayos de análisis térmico se clasifican en varias categorías [87].
 - Atmósfera oxidativa: O₂ y aire.
 - Atmósfera reductora: H₂ y CO.
 - Atmósfera inerte: He, N₂ y Ar.
 - Atmósferas con gases generados por las propias muestras o de las reacciones de la muestra con la atmósfera de trabajo, como puede ser el CO₂, vapor de agua o mezcla de gases.
 - Atmósferas corrosivas: Cl₂, F₂, SO₂, HCN.

Todos estos tipos de atmósferas pueden ser controladas mediante la variación de la presión y trabajando incluso a vacío.

c) **El caudal.** Afecta a la temperatura de descomposición de la muestra, a la precisión para el cálculo de la determinación de la temperatura, a la horizontalidad de la línea base de los termogramas y al área de los picos obtenidos en las curvas de los análisis de DTA y DSC.
d) **Otros.** Hay que tener precaución para evitar reacciones entre la muestra, el termopar, el portamuestras y con la atmósfera de trabajo, ya que el equipo de análisis podría sufrir importantes daños.

3.4.4 El portamuestras

Existen números tipos de portamuestras y fabricados de diferentes metales de muy diversas formas. La elección del portamuestras depende de la naturaleza de la muestra a analizar y las condiciones experimentales [88]. En la figura 11, se muestran algunos ejemplos de los portamuestras utilizados para los ensayos DTA y DSC [45]

![Figura 11. Portamuestras o crisoles para los ensayos térmicos DTA, DSC [45].](image)

Algunos de los materiales de los que pueden estar fabricados los portamuestras son de platino, plata, níquel, aluminio, acero inoxidable y cuarzo. La capacidad de estos portamuestras o crisoles varía entre los 10-300 mg. Los rangos óptimos de trabajo de temperatura y conductividad térmica para cada tipo de crisol son diferentes. Hay que tener precaución con la máxima temperatura de trabajo y la máxima temperatura a la que puede trabajar los crisoles. Pueden tener lugar fusiones de la muestra con el crisol y provocar daños irreparables en el equipo. En la tabla 5 [89] se resumen las temperaturas máximas de operación para algunos de los materiales a partir de los cuales se fabrican los crisoles comerciales para los análisis térmicos.

Tabla 5. Máxima temperatura de operación para los crisoles fabricados de diferentes materiales.

<table>
<thead>
<tr>
<th>Material</th>
<th>Máxima temperatura recomendada de operación (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminio</td>
<td>560</td>
</tr>
<tr>
<td>Nitruro de aluminio</td>
<td>480 (aire)</td>
</tr>
<tr>
<td></td>
<td>980 (N_2)</td>
</tr>
<tr>
<td>Grafito</td>
<td>230 (aire)</td>
</tr>
<tr>
<td></td>
<td>880 (N_2)</td>
</tr>
<tr>
<td>Oro</td>
<td>930</td>
</tr>
<tr>
<td>Platino</td>
<td>1630</td>
</tr>
<tr>
<td>Plata</td>
<td>830</td>
</tr>
<tr>
<td>Acero inoxidable</td>
<td>130</td>
</tr>
</tbody>
</table>
Otro requerimiento que se le pide a los crisoles es que sean lo más pequeños posibles, con el fin de facilitar la difusión de los gases liberados de la muestra y la transferencia de calor a la misma. En los procesos de sublimación y vaporización, se recomienda además que los crisoles sean sellados para evitar las pérdidas de masa producidas durante dichos procesos.

3.4.5 Empaquetamiento de la muestra

Las muestras con relativos espesores presentan espacios vacantes en su estructura que reducen la conductividad térmica en la propia muestra, las curvas que se obtienen en los ensayos DTA, DSC y TG, varían en función de la densidad de empaquetamiento de la muestra. La densidad de empaquetamiento afecta al contacto de la muestra con la atmósfera. Por ejemplo, la segunda etapa de la reacción del \(\text{CaC}_2\text{O}_4\cdot\text{H}_2\text{O} \) en aire es la eliminación del CO:

\[
\text{CaC}_2\text{O}_4\cdot\text{H}_2\text{O} \rightarrow \text{CaCO}_3 + \text{CO}
\]

El pico que se observa en la curva DTA en una muestra de de \(\text{CaC}_2\text{O}_4\cdot\text{H}_2\text{O} \) con una baja densidad de empaquetamiento es del tipo exotérmico y tiene lugar a la temperatura de 511,8°C, el aire difunde fácilmente hacia el interior de la muestra y provoca una oxidación de la muestra. En cambio, si la muestra posee una densidad de empaquetamiento elevada, el pico que se observa en la curva DTA es del tipo endotérmico y tiene lugar a la temperatura de 513,5°C, debido a que el aire no ha podido penetrar en el interior de la muestra.

3.5 Información obtenida de las curvas de análisis térmico

En las gráficas obtenidas en los análisis térmicos diferenciales, se representa en el eje de ordenadas la diferencia de temperatura entre la muestra y la sustancia de referencia y en el eje de abscisas se representa a la temperatura o el tiempo de ensayo. En la figura 12 se muestra un esquema del pico obtenido en un análisis térmico diferencial genérico teórico y en la figura 13 el de un pico real [45].
Todos los términos que aparecen en el pico de la figura 12, pueden ser utilizados para la explicación de cualquier otro tipo de pico o multipicos que aparezcan en los análisis térmicos diferenciales. Las líneas bases marcadas en la figura 13 como AE y CD, son las zonas donde no se produce un cambio significativo en la temperatura.

El pico exotérmico o endotérmico, es la zona de la curva del análisis térmico diferencial que primeramente se aleja de la línea base y más tarde vuelve a acercarse a ella. Esta región se engloba entre los puntos EHC de la figura 13.

En un pico endotérmico la temperatura de la muestra disminuye por debajo de la temperatura de la muestra de referencia, y en un pico exotérmico al contrario.

La anchura del pico de la figura 13, marcada con las letras EC, se define como el intervalo de tiempo o temperatura comprendido entre los puntos de inicio de salida de la línea base y final de la misma. La altura del pico marcada con las líneas HB en la figura 13, es la distancia entre la interpolación de la línea base y la punta del pico H y es proporcional a la velocidad de reacción. El área del pico $EHCE$ es la región encerrada entre el pico y la interpolación de la línea base. Si se ha hecho una correcta calibración del equipo de análisis térmicos, el área $EHCE$ es proporcional a la entalpía, y por tanto puede ser utilizada para la estimación de las cantidades de muestra involucrada en el proceso térmico. El punto B de la figura 13, marca la intersección de la línea de extrapolación de la línea base EC con la máxima tangente a la línea EJ extrapolada de la línea base EC.

Figura 12. Esquema del pico obtenido en un ensayo de análisis térmico diferencial genérico (DTA) [45].

Figura 13. Esquema del pico obtenido en un ensayo de análisis térmico diferencial (DTA) [45].
Las curvas de análisis térmico se dividen en dos tipos, curvas derivadas y curvas sin derivar. La diferencia entre una curva deriva y otra no, se puede observar en el ejemplo de la figura 14 [43, 44]. En la representación superior se representa una curva termogravimétrica normal (TG), es decir se representa la pérdida de masa en función de la temperatura, y en la curva inferior, se representa la curva derivada termogravimétrica diferencial (DTG), y como se puede observar existen grandes diferencias. Para procesos en los que se produzcan multietapas, es recomendable siempre representar la curva derivada, ya que los procesos se diferencian más claramente.

Figura 14. Ejemplo de Curvas TG y DTG para reacciones químicas de transición [43].

Como se ha visto en la figura 14, de forma general en las curvas generadas en los análisis termogravimétricos se representa la pérdida de masa de la muestra en función de la temperatura o el tiempo, y si además se representa la curva derivada, se obtiene la velocidad de variación de la masa de la muestra: (dm/dt).

En la figura 15 [43] se muestra un ejemplo de curvas termogravimétricas, la curva normal y la curva derivada, obtenidas en el ensayo termogravimétrico tipo realizado en el oxalato cálcico monohidratado. Este ensayo se utiliza generalmente como estándar para la calibración de los equipos termogravimétricos.
Las curvas representadas en la figura 15 muestran que el oxalato cálcico monohidratado sufre un proceso de descomposición térmica en tres etapas de acuerdo a las reacciones que se muestran a continuación.

I. \[\text{CaC}_2\text{O}_4\text{.H}_2\text{O}(s) \rightarrow \text{CaC}_2\text{O}_4(s) + \text{H}_2\text{O}(g), \]
en esta primera etapa, se pierde el agua de hidratación. Para el cálculo de la pérdida de masa en esta primera etapa se divide el peso molecular del agua entre el peso molecular del oxalato cálcico monohidratado.

\[\Delta m = \left(\frac{18}{146} \right) \times 100 = 12,3\% \text{ de pérdida de peso}. \]

II. \[\text{CaC}_2\text{O}_4(s) \rightarrow \text{CaCO}_3(s) + \text{CO}(g), \]
en la segunda etapa, el oxalato cálcico se descompone dando lugar a la formación del carbonato cálcico y el monóxido de carbono. La pérdida de peso producida en la segunda etapa del proceso térmico de descomposición se obtiene dividiendo el peso molecular del monóxido de carbono entre el del oxalato cálcico monohidratado.

\[\Delta m = \left(\frac{28}{146} \right) \times 100 = 19,2\% \text{ de pérdida de peso}. \]
III. $\text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g)$, en la última etapa del proceso de descomposición, el carbonato cálcico se descompone en óxido de calcio y dióxido de carbono. La pérdida de peso se calcula de forma análoga que para los casos anteriores.

$$\Delta m = \frac{44}{146} \times 100 = 30,1\% \text{ de pérdida de peso.}$$

$$\Delta m_{\text{Total}} = 12,3 + 30,1 + 19,2 = 61,6\% \text{ de pérdida total de peso}$$

A partir de una temperatura de 700°C, el residuo que queda al final del proceso CaO no sufre ningún cambio en su masa [90, 91].

3.5.1 Descripción física y matemática del DTA

El esquema sencillo de un equipo de análisis térmico diferencial, se muestra en la figura 16 a) y 16 b) [55]. En 1968 Gray propone el modelo matemático para describir el flujo de calor en las celdas de análisis térmico diferencial que se muestra en la figura 16 a) y 16 b).

![Esquema de un equipo DTA](image)

Figura 16. a) Esquema de un equipo DTA; b) esquema de una celda DTA [55].

El modelo matemático tiene en cuenta la temperatura de la sustancia de referencia, la temperatura de la muestra, la fuente de energía térmica y una resistencia al
flujo de esta energía térmica hacia dichas muestra. También tiene en cuenta que la temperatura de las muestra es homogénea e igual a la del portamuestras que la contiene. De acuerdo con estas premisas, el balance de energía propuesto para la muestra es el siguiente.

\[\text{ec.5} \]

De la ecuación 5 se extrae que \(t \) es el tiempo, \(C_s \) es la capacidad calorífica de la sustancia de referencia incluida el portamuestras; \(T_p \) la temperatura de la fuente de energía; \(T_s \) la temperatura de la muestra; \(R \) la resistencia al flujo de calor y \((dh/dt) \) la velocidad de generación de calor en la muestra.

Para la celda de la muestra de referencia puede escribirse una ecuación similar, teniendo en cuenta ahora que en la celda de referencia no se produce generación de calor y que tanto la celda de la muestra como la celda de la sustancia de referencia, tienen la misma resistencia a la atmósfera de ensayo del análisis térmico diferencial, \(R \).

\[\text{ec.6} \]

\(Cr \), es la capacidad calorífica de la sustancia de referencia junto a su portamuestras.

Combinando las ecuaciones 5 y 6 se llega a las expresiones de las ecuaciones 7 y 8, que representan el balance de energía en los procesos ocurridos durante el desarrollo de un análisis térmico diferencial.

\[\text{ec.7} \]

\[\text{ec.8} \]

La curva de análisis térmico diferencial, DTA, se construye a partir de los términos de la ecuación 8. En la figura 17 [43, 44] se representa de forma esquemática una curva de DTA con los términos de la ecuación 8 que la describen.
El término \((T_S-T_r) \) de la ecuación 8, representa la diferencia de temperatura entre la sustancia de referencia y la muestra y corresponde con cualquier punto del eje de ordenadas.

El término \(R(C_S-C_r)(dT_r/dt) \) representa la línea base que se encuentra desplazada con respecto al nivel cero, y depende de la diferencia en las capacidades caloríficas de la muestra y la sustancia de referencia, de la resistencia térmica del sistema y de la velocidad de calentamiento.

El término \(R C_S d(T_S-T_r)/dt \), representa la pendiente de la curva en cualquier punto multiplicado por una constante de tiempo del sistema \(R C_S \), que puede obtenerse de forma experimental.

El punto \(a \) de la figura 17 representa el punto de inicio de la transformación, el punto \(b \), el punto máximo y el punto \(c \) el de finalización.

3.5.2 Relación entre los picos del DTA y la forma de los diagramas de fase.

La curva obtenida en un análisis térmico diferencial, DTA se puede dividir en tres partes, una antes de producirse la reacción, otra durante la reacción y la última después de la reacción.
Antes de la reacción.

No se produce generación ni absorción de energía por parte de la muestra, por tanto, \((dh/dt)=0\). Y dado que los equipos de análisis térmico mantienen la línea base horizontal, no se registra diferencia de temperatura.

\[\text{ec.9}\]

Sustituyendo la expresión \((dh/dt)=0\) y la ecuación 9 en la ecuación 8, se obtiene el balance de energía que se muestra en la expresión 10, válido para cualquier diagrama de fases en el que no se produzca reacción.

\[\text{ec.10}\]

Durante la reacción.

En este caso, se pueden distinguir a su vez tres posibles situaciones, que la reacción transcurra de forma isotérmica, y que lo haga con velocidades constantes o no.

- Caso I. Reacción isoterma.

En este caso se encuentran por ejemplo los procesos de fusión de elementos químicos puros y las reacciones eutécticas en sistemas multicomponentes. Durante la reacción isotérmica la temperatura de la celda de la muestra se mantiene constante e igual a la temperatura de la reacción llamada \(T_{rxn}\). Sustituyendo la temperatura de la muestra \(T_S\) por \(T_{rxn}\) y teniendo en cuenta que \((dT_S/dt =0)\), la ecuación 8 del balance de energía queda en forma de la ecuación 11.

\[\text{ec.11}\]

La temperatura de la muestra de referencia puede expresarse de acuerdo a la ecuación 12.

\[\text{ec.12}\]
En la ecuación 12, el término es la temperatura de la sustancia de referencia justo antes de que se produzca la reacción en la muestra que se está midiendo. Teniendo en cuenta la ecuación 9 y la ecuación 12, se llega a la ecuación 13.

\[
T_S - T_r = T_{rxn} = (\quad) = -R(C_s - C_r). \quad \quad \text{ec.13}
\]

Sustituyendo la ecuación 12 en la ecuación 13, se llega al balance final de energía para este caso en concreto.

En muchas de los casos el término \((dT_r/dt)\) es una velocidad de barrido constante y el término \(R(C_S - C_r)\), se puede considerar constante.

En la figura 18 [55] se representa la curva obtenida en el análisis térmico diferencial correspondiente a la transformación eutéctica del sistema binario Al-Li.
- **Caso II. Velocidad constante de reacción.**

Cuando la velocidad de reacción es constante, gráfica de la figura 19, en el balance de energía de la ecuación 8, el término \(R.(dh/dt) = \text{constante} = C_1 \). Teniendo en cuenta además la ecuación 9, se llega al balance de energía mostrado en la ecuación 15. En las gráficas de las figuras 19 y 20 [55] se representa la velocidad de reacción y la curva diferencial de temperatura, correspondiente al ensayo realizado en el caso II, cuya velocidad de reacción es constante.

\[
\Delta T = C_2 - \exp (- \quad \text{ec.15})
\]

Figura 19. Representación gráfica hipotética para una transformación de fase con velocidad de reacción constante [55].

Figura 20. Representación gráfica del DTA hipotético para un sistema con velocidad constante de reacción [55].

- **Caso III. Velocidad de reacción no constante.**

Muchas de las reacciones que tienen lugar en los equilibrios de fases, se producen con velocidades no constantes de reacción. Suponiendo una aumento lineal de la velocidad de reacción, y tal como se muestra en la gráfica de la figura 19, el término \(R.(dh/dt) = C_4.t \) del balance de energía de la ecuación 8 se asume como una constante. Combinado el término \(R.(dh/dt) = C_4.t \) con las ecuaciones 9, 10 y 11 se llega a la expresión correspondiente al balance de energía obtenido para el caso III mostrado en la ecuación 16.

\[
\Delta T = C_4.t + C_6 - \exp (- \quad \text{ec.16})
\]
En la gráfica de la figura 21 se representa la velocidad de reacción frente al tiempo y en la gráfica de la figura 22 [55], se representa la curva del análisis térmico diferencial correspondiente a la ecuación 16 del caso III en cuestión.

![Figura 21](image1.png)
Figura 21. Representación gráfica hipotética para una transformación con velocidad de reacción no constante [55].

![Figura 22](image2.png)
Figura 22. Representación gráfica del DTA hipotético para un sistema con un incremento lineal de la velocidad de reacción [55].

> **Después de la reacción.**

Cuando la reacción ha finalizado, o se producen absorciones, no cesiones de calor en la muestra, \((dh/dt) = 0\). Sustituyendo este término en la ecuación 8, se llega a la ecuación de 17.

\[\text{ec.17} \]

Resolviendo la ecuación 17, tomando como condiciones de contorno \(\Delta T = \Delta_{\text{max}}\) cuando \(t=0\), se llega a la ecuación final 18.

\[\text{ec.18} \]

Como se ha visto en todos los casos expuestos en el apartado 1.5.2, la forma de las curvas de un análisis térmico diferencial va a depender de muchos factores, como son el tipo muestra, la sustancia de referencia y las resistencias al flujo de calor, tanto de la muestra como de la de referencia.
Otros factores que influyen en los análisis térmicos son las velocidades de calentamiento y de enfriamiento. Teniendo en cuenta todos estos factores y con la ayuda de bases datos con valores perfectamente conocidos de capacidades caloríficas y entalpías de transición, se puede calcular la diferencia de temperatura entre una muestra y una sustancia de referencia. De esta forma se obtienen valores teóricos de temperaturas de transición para poder compararlos con los valores obtenidos de forma experimental.

3.6 Aplicaciones de los análisis térmicos diferenciales

3.6.1 Determinación del punto de fusión y cristalización

A partir del pico endotérmico correspondiente al proceso de fusión, y a partir del exotérmico correspondiente al proceso de cristalización obtenidos en los ensayos diferenciales de temperatura DTA o los ensayos de barrido calorimétricos, DSC, se obtienen las temperaturas de transición de estos procesos.

Con el fin de eliminar la historia térmica de la muestra a ensayar [92], el ensayo de DTA o DSC que se realice para la obtención de las temperaturas de transición anteriormente citadas, hay que seguir los procedimientos marcados en la norma ASTM D 3418-82 y en la norma JIS K 7121-1987 [93], que se resumen de forma esquemática en los siguientes puntos.

- Antes de realizar el ensayo, la muestra ha de estar a temperatura ambiente (23±2°C) y humedad de 50±5% un mínimo de 24 horas.
- Se pesa una cantidad de muestra, unos 10mg más o menos, asegurándose que es lo más representativa de la muestra que se quiere ensayar.
- Se introduce dicha muestra en la cápsula o crisol del equipo DTA o DSC y se calienta desde la temperatura ambiente hasta 30°C por encima de la temperatura de fusión de la misma durante 10 minutos, con el fin de asegurar la completa fusión de la muestra. Por último, se enfría la muestra hasta una temperatura por lo menos 50°C inferior a la temperatura de cristalización.
Las temperaturas de fusión resultantes se representan en la figura 23 y las de cristalización en la figura 24 [43].

La temperatura del pico (T_{pm}) del ensayo de DTA o DSC de la figura 23, se toma como la temperatura de fusión de la muestra. Las otras temperaturas que aparecen en la figura 23 T_{im}, T_{im}', T_{em} y T_{em}', se obtienen a partir de las tangentes al pico con la línea base, y sirven para definir completamente el pico correspondiente.

El proceso de fusión, también puede estar definido por una curva con dos picos, como se muestra en la imagen b) de la figura 23.

La temperatura (T_{pc}) de la figura 24, corresponde con la temperatura de cristalización, el resto de temperaturas que aparecen, al igual que para el proceso de fusión, se utilizan para la completa definición del pico de cristalización.

Ejemplos del uso de técnicas de análisis térmico para la obtención de los puntos de fusión y cristalización se encuentran en estudios como el realizado por Mikuli [94] en especies del tipo [Ni(H$_2$O)$_6$(NO$_3$)$_2$], en el que mediante diferentes ensayos térmicos, identifican las dos etapas del proceso de fusión de estas especies.
Una de las aplicaciones más comunes es el uso de técnicas DTA y DSC para la obtención de los puntos de fusión de materiales que se utilizan como patrones [95].

En el campo de los materiales poliméricos, la obtención de los puntos de fusión y cristalización encuentran también un espectro amplio de aplicación. Seeger [96, 97] habla en su trabajo realizado en este sector, de la importancia del estudio e investigación de la fusión y comportamiento de los polímeros a alta presión, ya que ayuda a la comprensión de sus estructuras, que son necesarias conocer para la aplicación de los mismos en diversos procesos industriales. Estos estudios se realizaron con técnicas DTA utilizando celdas especiales que pueden trabajar a alta presión.

En el campo de los materiales que trabajan a altas temperaturas, se encuentra el estudio realizado por Li [98] en incineradoras de residuos sólidos urbanos. El uso de las técnicas DSC-DTA para el estudio de las cenizas volantes generadas en los procesos de incineración, ayudan a la comprensión de los mismos y aportan datos necesarios para el diseño de los mismos.

Con respecto a aleaciones metálicas, se han encontrado trabajos como el publicado por M. Gogebakan [99] sobre el estudio de las fases cuasicristalinas que se forman en las aleaciones Al$_{63}$Cu$_{20}$Fe$_{12}$, cuyas propiedades hacen de estas aleaciones que tengan potenciales aplicaciones industriales. Con el uso de técnicas DTA, pudieron obtener los puntos de fusión de estas especies cuasicristalinas.

Bondar [100] realizó un estudio centrado en la aleación ternaria Ti-Sn-B, en concreto en la región de solidificación, mediante técnicas de DTA y DRX, analizando el efecto de diferentes adiciones de Sn en los puntos de fusión de las especies de la aleación eutéctica Ti-B.

En el campo de las aleaciones amorfas Dargel-Sulir [59] en las Mo$_x$Ni$_{1-x}$ y Matsura en las FeB [101], obtuvieron las temperaturas de cristalización de este tipo de aleaciones mediante técnicas de DTA.

3.6.2 Determinación de los diagramas de equilibrio de fases

Un importante paso en la investigación de la aleaciones es la definición de sus diagramas de fases, también conocidos como los “mapas de carreteras” de los
materiales que componen dichas aleaciones. El conocimiento del equilibrio de las fases, su estabilidad y sus transformaciones, sirven como puntos de referencia para comprender mejor tanto las propiedades de las aleaciones como sus posibles aplicaciones tecnológicas. Los diagramas de fases son por tanto esenciales para el desarrollo de nuevos materiales, análisis de fallos y procesado de los mismos.

Los diagramas de fases se establecen determinando los límites de fase, ya que en estos lugares es donde se producen cambios en la composición o en las fases que a su vez implican en cambios en las propiedades físicas. Por tanto, los cambios en las propiedades físicas son los métodos principales que se emplean para determinar los diagramas de fases. Estos métodos se aplican habitualmente en conjunción con técnicas experimentales complementarias como la microscopía óptica y electrónica y difracción de rayos-X entre otras. Además y como complemento, se pueden utilizar programas informáticos para predecir la curvas de sólidus [102].

La técnica de microscopía implica la observación directa de las fases por microscopía óptica y/o electrónica, lo que permite realizar el estudio de su microestructura. Como ejemplos de propiedades físicas se pueden destacar: la resistividad eléctrica, el cambio de volumen que se traduce en un cambio de longitud y que es el objeto de estudio de la dilatometría, las propiedades magnéticas y el calor de fusión o de solidificación. De todas ellas el análisis térmico es la técnica más utilizada.

El análisis térmico, en conjunción con las técnicas de microscopía y de difracción de rayos X, es aplicable a un gran número de sistemas de aleación, y es particularmente idónea para determinar las líneas de líquidos y de sólidos.

La línea de líquidos se determina a partir de curvas de enfriamiento, y la de sólidos se determina con las curvas de calentamiento. Una curva de enfriamiento es un registro de la temperatura frente al tiempo del líquido a medida que se enfría.

La curva de calentamiento es una gráfica similar de temperatura-tiempo durante el calentamiento de un sólido. Los cambios en la pendiente de estas curvas representan la solidificación (enfriamiento) o la fusión (calentamiento) del material.
➢ **Curvas de enfriamiento y curvas de líquidos.**

El proceso de enfriamiento de un metal puro desde su estado líquido hasta alcanzar su punto de solidificación, se relaciona con el calor latente.

Un ritmo de enfriamiento lento pone de manifiesto una meseta de la curva tiempo-temperatura de enfriamiento, que es cuando se desprende calor latente. El calor latente compensa la pérdida de calor del sistema hacia el entorno, y la temperatura permanece constante hasta que todo el líquido se ha solidificado. Una vez que esto ha ocurrido, el sistema comienza a enfriarse de nuevo. En las figuras 25 y 26 se representan las curvas típicas Temperatura-Tiempo que pueden darse.

![Curva de enfriamiento T-T](image)

Figura. 25. Curva de enfriamiento t-T, con una meseta que puede ser un metal puro o una aleación eutéctica [55].

![Curva de enfriamiento T-T](image)

Figura. 26. Curva de enfriamiento t-T, con cambio de pendiente y meseta, que puede deberse a una aleación hipo o hipereutéctica [55].

Para conocer si la gráfica 25 corresponde a un metal puro o a una reacción eutéctica, es necesario observar la microestructura, siendo la reacción eutéctica una microestructura laminar de dos fases y la del metal puro una microestructura de una sola fase con límites de grano.

Cuando una composición ya sea hipoeutéctica o hipereutéctica se enfriará a partir de su estado líquido, se desprende calor cuando se alcanza la línea de líquidos, y esto se representa como un cambio de pendiente de la curva de enfriamiento mostrada en la gráfica de la figura 26. Este cambio en la pendiente se debe a la variación que se produce en la composición del líquido restante y que altera la temperatura de solidificación. Después, la temperatura disminuye a un ritmo más lento que el inicial debido al desprendimiento de calor de la muestra que se está enfriando y que lo está cediendo al medio.
Continuando con el proceso de enfriamiento mostrado en la figura 26, éste continúa hasta que el líquido restante adquiere la composición eutéctica y, en ese momento, la solidificación continúa a temperatura constante hasta que todo el líquido residual se solidifica; después de este punto, la temperatura baja de nuevo.

Las aleaciones que muestran este tipo de curvas de enfriamiento tienen composiciones comprendidas entre las de los extremos de la línea de enlace de temperatura eutéctica (ya sea hipo o hipereutéctica). Para este caso al igual que para los metales puros o aleaciones eutécticas, también es necesario observar la microestructura para saber si la aleación es hipo o hipereutéctica.

- Curvas de calentamiento y curvas de sólidus.

Estas curvas sirven para determinar con más precisión las curvas de sólidus distintas a las que muestra la línea de enlace eutéctica. Para alcanzar la línea de sólidus, es necesario calentar la aleación justamente por debajo de la línea de sólidus hipotética para homogeneizar la composición, y después calentar la muestra lentamente. El punto de sólidus aparece como un cambio de pendiente en la curva de calentamiento. La línea de sólidus se puede determinar con exactitud examinando las microestructuras de muestras calentadas con incrementos de temperatura y templadas. La microestructura debe mostrar una fusión incipiente, que en ocasiones se describe como un quemado.

Para la obtención de las curvas de sólidus y de líquidos se pesan con exactitud los componentes de la aleación y se funden. Se agita el líquido y se deja durante alrededor de 15 minutos a una temperatura para asegurar la homogeneidad de la composición. A continuación se enfrián el líquido lentamente para obtener la curva de enfriamiento.

Los cambios de dependiente de las curvas de enfriamiento y calentamiento son las temperaturas de líquidos y de sólidos a la composición de la muestra. Por tanto, se indican estas temperaturas en la línea vertical de la composición.

Cada línea de composición vertical tiene una temperatura de líquidos y una de sólidos. Se repite este procedimiento para las demás composiciones. Cada línea vertical de composición tiene una temperatura de líquidos y una de sólidos.

Se unen todas las temperaturas de líquidos observadas mediante una curva continua, y se hace lo mismo con todas las temperaturas de sólidos observadas para
obtener una curva. Ambas curvas se unen a los puntos de fusión de los metales puros para formar las curvas de líquidos y sólidos del sistema de aleación [103].

Las técnicas de análisis térmico se han utilizado para la obtención de los diagramas de fases de todo tipo de aleaciones metálicas, formadas tanto por dos, tres, cuatro, cinco incluso seis elementos. Estas técnicas de análisis térmico se basan en la obtención de las temperaturas de líquidos y sólidos anteriormente citadas, mediante ensayos térmicos con temperatura controlada [85, 104-107]

A continuación se muestran algunos ejemplos de estudios realizados en este campo.

Para el caso de las aleaciones binarias, el estudio de los diagramas de fases mediante las técnicas de análisis térmico ha permitido mejorar el conocimiento de estos sistemas, imprescindible para la aplicación de dichas aleaciones en determinados campos. Un ejemplo se encuentra en el trabajo realizado por K.Ananthasivan [108] sobre el sistema binario formado por el Cu-Ni. Estas aleaciones son importantes debido a sus potenciales aplicaciones en la industria ya que, presentan excelentes propiedades mecánicas y buena resistencia a la corrosión. Realizando numerosos ensayos térmicos diferenciales a muestras comprendidas entre 0-100%Ni, obtuvo las temperaturas del líquidos y sólidos para el sistema Cu-Ni.

Otros ejemplos de investigaciones realizadas para la obtención de las temperaturas del sólidos y líquidos son por ejemplo los trabajos realizados por Kato [109] y Leibowitz [110] en óxidos de plutonio y uranio cuyas temperaturas de fusión y solidificación es importante conocer para su aplicación como combustibles en reactores nucleares.

Otro ejemplo se encuentra en el estudio realizado por Ode,[111] el cual utilizó técnicas calorimétricas, DSC, junto con técnicas de microscopía electrónica, difracción de rayos-X y espectrometría-ICP para estudiar el sistema binario compuesto por los elementos Al-Ir. El estudio de estas aleaciones y sus derivadas se enmarca en el desarrollo de materiales sometidos a elevada temperatura por tanto, el estudio de las transformaciones que tienen lugar entre ellos es un punto muy importante para validar el uso de estas aleaciones en esas aplicaciones.
Otro ejemplo enmarcado en el estudio de los diagramas de fases es el trabajo realizado por A. Janghorban [112] sobre la aleación Ce-Pt. Mediante las técnicas de análisis térmico descubrió las reacciones invariantes que daban lugar a las nuevas especies entre el Ce y el Pt, y las temperaturas del equilibrio sólido–líquido.

Esta información le sirvió a A. Janghorban [112] para el desarrollo de nuevos catalizadores basados en nanocompuestos a partir de Ce y el Pt.

Para el sistema formado por Ca-Ge, Palenzona [113] realizó un estudio de su diagrama de fases con el fin de conocer mejor las especies intermedias formadas por ambos elementos y que hasta la fecha no se encontraban definidos en la bibliografía. Mediante las técnicas de análisis térmico y con el apoyo del análisis metalográfico y la difracción de R-X, confirmó la existencia de cuatro nuevas especies intermedias y cuatro reacciones eutécticas, definiendo con más claridad el sistema binario formado por el calcio y el germanio.

Para el caso de las aleaciones ternarias, el uso de las técnicas de análisis térmicos ha ayudado a una mejor comprensión de los mismos, ya que los diagramas de fases ternarios publicados hasta la fecha son muy escasos y los que están investigados no se encuentran definido completamente. Algunos de los trabajos publicados en relación al estudio de los diagramas de fases ternarios, se encuentran en el realizado por Chang [114] en las aleaciones Al-Si-Cu, en el cual, mediante técnicas de DTA, obtuvieron las temperaturas de líquido y la temperatura de fusión. Trabajos similares al de Chang, son los realizados por Lapsa [115] en el sistema ternario Cu-Sb-Sn, en el rango de composiciones $X_{Cu} = 0,8$; $X_{Cu}/X_{Sn} = 1,22$ y $X_{Sb}/X_{Sn} = 1$; y el trabajo realizado por Artykh [116] en el sistema Sc-Zr-C ayudado de técnicas DRX y DSC.

S. Hassam y col. [117, 118] estudiaron el sistema ternario compuesto por Ag-Bi-Sb. El objetivo de este estudio fue conocer las transformaciones invariantes ocurridas en dicho sistema. Teniendo en cuenta la composición del bismuto constante, hicieron un barrido de composiciones analizando mediante ensayos térmicos los cambios producidos en dicho sistema y plasmándolos en un diagrama ternario. Con esto ensayo determinaron de forma experimental las transformaciones peritéticas que tienen lugar en el sistema ternario Ag-Bi-Sb.
Para el sistema ternario compuesto por los elementos Ag-Sn-In, Vassiler y col. [119], realizaron ensayos térmicos diferenciales del tipo DSC complementados con las técnicas de caracterización de difracción de R-X y de microscopía electrónica de barrido SEM, para la obtención isotermas de dicho sistema ternario. Mediante el uso de las técnicas calorimétricas, además pudieron contrastar los datos bibliográficos con los obtenidos experimentalmente en relación a las temperaturas de las transformaciones invariantes y los rangos de solubilidad de los elementos Ag, Sn y e In entre sí.

Las técnicas de análisis térmico para la obtención de diagramas de fases encuentran una gran aplicación en el estudio de los materiales destinados a fabricar soldaduras. Estos materiales se caracterizan por presentar transformaciones del tipo eutéctica, las cuales tienen lugar a una temperatura más baja que la de los componentes por separado y que hace que estas aleaciones se puedan fundir fácilmente. Y.Zhang [89] estudio el sistema compuesto por los elementos Pr-Cu-Al, y mediante ensayos térmicos obtuvo las temperaturas de inicio y final del proceso de fusión correspondientes a las líneas de líquidus y sólidus y obtuvo también la temperatura de la transformación eutéctica ternaria.

Otro estudio realizado en el campo de las soldaduras es el de G.P. Vassilev [120] que investigó sistema de aleación formado por los elementos Ti-Bi-Zn, en el cual, el titanio de alto punto fusión forma especies intermedias con el bismuto y el zinc, de bajo punto de fusión y que actúan como adhesivo. El uso de las técnicas de análisis térmico le permitió a Vassilev el conocimiento del diagrama de fases, las transformaciones que daban lugar a esas especies intermedias y las temperaturas a las cuales se formaban.

En el campo de los materiales destinados a la producción de semiconductores, se encuentran las aleaciones ternarias Bi-Fe-Sb [121], en las cuales se desarrollan los antimonius de metales de transición, que hacen de estas aleaciones ser prometedoras en el desarrollo de una nueva generación de semiconductores. El conocimiento de las propiedades termodinámicas y del diagrama de fases de estos materiales, es imprescindible para predecir el comportamiento térmico y la evolución de la microestructura de la aleación con la temperatura, y mediante las técnicas de análisis térmico DTA y DSA se obtiene toda esta información.
Con respecto a las aleaciones cuaternarias, aun hay menos bibliografía disponible acerca de sus diagramas de fases. Aun así, el estudio y desarrollo de las mismas es crucial para el conocimiento necesario de dichas aleaciones, para poder ser utilizadas en diferentes aplicaciones. Así, M.Ohno [122] estudió el sistema cuaternario formado por los elementos Mg-Al-Mn-Zn, mediante el uso de técnicas diferenciales calorimétricas y térmicas diferenciales, con el fin de obtener de forma experimental las temperaturas de las curvas de sólidos y líquidos. Esta información es muy importante para conocer el comportamiento térmico de estas aleaciones en el proceso de solidificación, crucial para el diseño y desarrollo de las aleaciones con base de Magnesio y sus series.

Kozlov y col [123] estudiaron el diagrama de fases cuaternario formado por los elementos Mg-Ca-Si-Sn mediante técnicas DTA/DSC y con el apoyo de otras técnicas SEM/EDX confirmaron las distintas fases obtenidas. Lo interesante de estas aleaciones es que entre las aleaciones libres de aluminio, las Mg–Sn–Ca (TX) presentan buenas propiedades frente a la corrosión y a la fluencia.

Para las aleaciones formadas por cinco componentes, se encuentran también ejemplos del estudio de los diagramas de fases. Así por ejemplo Belov [124] realizó un estudio de las aleaciones comerciales para la fabricación de pistones para automoción. Estas aleaciones se componen de los elementos: Al-Si y otros como son el Fe, Mg, Ni y el Cu. El conocimiento de estas aleaciones implica conocer el proceso de solidificación y las transformaciones entre los diferentes elemento que tienen lugar. Para ello estudió mediante un triangulo de concentraciones, las diferentes reacciones invariantes entre las diversas especies que se formaban y las temperaturas a las cuales tenían lugar, mediante técnicas de análisis térmico y apoyadas después con microscopía electrónica de barrido y difracción de rayos-x.

3.6.3 Otras Aplicaciones de los análisis térmicos

Los métodos de análisis térmico, además de ser utilizados para la obtención de diagramas de fases, encuentran una amplia aplicación tanto en el control de la calidad como en la investigación de productos industriales, tales como polímeros, productos farmacéuticos, arcillas y minerales.
Además, como se complementan con otras técnicas analíticas como es la espectroscopía y la cromatografía, se pueden identificar y cuantificar muestras.

Una de sus principales aplicaciones está en la formulación, procesado y control de los productos farmacéuticos [125-128] drogas, excipientes, etc., ya que permiten evaluar la pureza de los diferentes componentes, su posible degradación, compatibilidad con otros excipientes, etc. Además, la introducción de automatización en estos procesos aumenta considerablemente las enormes ventajas de estos métodos de análisis térmico [129].

Los métodos de análisis térmico son una herramienta poderosa y ampliamente utilizada para el estudio y la caracterización de polímeros. La obtención de la temperatura de transición vítrea es una de las propiedades que más se estudian a la hora de la caracterización de los polímeros y se obtiene a partir de un ensayo sencillo del tipo DSC [130-132]. Otras propiedades de los polímeros que se suelen estudiar son el grado de cristalinidad, que se realiza mediante un ensayo DSC viendo el calor absorbido por la muestra y el que debería haber absorbido si ésta fuese 100% cristalina, dato que se encuentran tabulado [133, 134]. Y la vida útil es otra propiedad estudiada en los polímeros y se obtiene mediante análisis termogravimétrico [135].

También, las medidas térmicas diferenciales han sido utilizadas en estudios sobre el comportamiento térmico de compuestos inorgánicos puros, al igual que de otras sustancias inorgánicas, tales como silicatos, ferritas, arcillas, óxidos, cerámicas [136-139], catalizadores, vidrios y cementos [140, 141]. Se obtiene información de procesos tales como desolvatación, fusión, deshidratación, oxidación, reducción, adsorción y reacciones en estado sólido [142-144].

En el mundo de la biotecnología, los análisis térmicos diferenciales tienen por ejemplo aplicaciones tan interesantes como el estudio del agua ligada a las membranas de las corneas humanas [145] o de los lípidos o grasas contenidas en las mismas.

También se utiliza para proporcionar de manera sencilla y exacta los puntos de fusión, ebullición y descomposición de compuestos orgánicos [146]. Y para la observación de los cambios producidos tras la realización de tratamientos térmicos en diversas muestras, como aceros.
3.7 Aleación Zinc-Aluminio-Bismuto

3.7.1 Aleación Zn-Al.

En cuanto a las características microestructurales de la aleación Zn-Al, vienen impuestas por el correspondiente diagrama de fases [161] que se muestra en la figura 27.

![Diagrama de fases Zn-Al y estructuras cristalinas de Al y Zn](image)

Figura. 27. Diagrama de fases Zn-Al y estructuras cristalinas de Al y Zn [161].

Las estructura cristalina del aluminio es cúbica centrada en caras con un radio atómico de 0,1431nm y la del zinc es hexagonal compacta y el radio atómico es de 0,1332nm, un tamaño más pequeño que los de aluminio. Esta diferencia de un 7% influye posteriormente en la microestructura de las estas aleaciones.

Los primeros estudios que se han encontrado acerca del sistema Zinc-Aluminio datan del año 1897, realizados por Heycock y Neville [147]. Mediante un pirómetro de platino, un crisol y un horno, realizaron ensayos de fusión de ambos metales por separado y construyeron en un papel milimetrado la primera aproximación de una parte de la línea de líquidos del diagrama binario Zinc-Aluminio.
El sistema Zinc-Aluminio se caracteriza por una amplia zona ocupada por la solución sólida $Al(fcc-\alpha)$, de estructura cristalina cúbica centrada en caras, que se extiende desde el aluminio puro hasta aproximadamente un 66% Zn [148, 149], y que se diferencia de la fase $Al(fcc-\alpha')$ en que la fase $Al(fcc-\alpha)$ es rica en aluminio y la $Al(fcc-\alpha')$ es rica en zinc. A temperaturas cercanas a los 400ºC existe una total miscibilidad de las fases $Al(fcc-\alpha)$ y $Al(fcc-\alpha')$ sin embargo, por debajo de los 350ºC, aparece una zona de inmiscibilidad de ambas fases [150].

La fase $Zn(hcp-\beta)$ es una solución sólida de aluminio en zinc, donde la solubilidad del aluminio en el zinc disminuye con el descenso de la temperatura.

La solubilidad que presenta el zinc en el aluminio tiene un máximo de 67%, este hecho es debido a que el zinc no forma compuestos intermetálicos con el aluminio, ya que las interacciones entre los átomos de uno y otro son muy débiles.

Una de las principales características de esta aleación y que la hace muy interesante para su estudio, es la descomposición que sufre la solución sólida sobresaturada de aluminio cuando es sometida a un proceso de enfriamiento rápido y posterior envejecimiento.

La descomposición de las soluciones sólidas sobresaturadas es un proceso importante que ocurre sobre los materiales que sufren algún tratamiento térmico y por tanto, provoca cambios en la microestructura que a su vez provocan cambios en las propiedades del material [151, 152].

Estas transformaciones dependen principalmente de la composición, del tratamiento térmico y del tiempo de envejecimiento. Para las aleaciones con una concentración de hasta un 35% en zinc la descomposición de la solución sólida supersaturada sigue el camino que se detalla a continuación.

Solución sólida sobresaturada \rightarrow Zonas G.P. esféricas \rightarrow Zonas G.P. elipsoidales \rightarrow Romboédrica α_R (o fase R) \rightarrow cúbica α'' (fcc) \rightarrow Zn (hcp-β), donde la fase R es una fase metaestable con estructura romboédrica que proviene de la descomposición en el enfriamiento desde altas temperaturas de la fase $Al(fcc-\alpha)$ [150, 153, 154].
En aleaciones con una concentración de hasta un 69% Zn, la fase Al\((fcc-\alpha')\), rica en zinc y presente a altas temperaturas, se transforma en las fases Al\((fcc-\alpha)\) y Zn\((hcp-\beta)\) mediante dos formas, una siguiendo un proceso continuo de descomposición de la solución sólida sobresaturada, y la otra siguiendo una secuencia que incluye una reacción celular, iniciada en la fase Al\((fcc-\alpha')\), en cuyos bordes de grano se forma una mezcla de las fases \(\alpha'_t\) y \(\alpha'_m\), que tras un posterior envejecimiento dan como resultado las fases finales Al\((fcc-\alpha)\) y Zn\((hcp-\beta)\) [155].

Estudios realizados por Skoko y Popovic [156-158], se centran también en la secuencia de descomposición de la solución sólida supersaturada comentada anteriormente, Zonas G.P. esféricas (fcc, con un radio entre 1-2nm) → Zonas G.P. elipsoidales(fcc) → Romboédrica \(\alpha_R\) (o fase R, con un radio entre 10nm) → Al\((fcc-\alpha')\)→Zn (hcp-\(\beta\)), pero en este caso con el apoyo de los resultados obtenidos de la difracción de R-X de diferentes muestras en el rango de composiciones 4,5%-65% de zinc. Para ello tomaron como base los picos obtenidos de la difracción del aluminio puro y observaron los cambios que se producían en el espectro en función del tratamiento térmico realizado a las muestras.

Realizaron difracciones con diferentes muestras, calentadas hasta la zona del diagrama donde se encuentra presente la solución sólida Al\((fcc-\alpha)\) con posterior enfriamiento y envejecimiento a temperatura ambiente

Observaron que la muestra sin envejecer presenta las fases correspondientes al Zn\((hcp-\beta)\) y a las del Al\((fcc-\alpha)\) tal cual, conforme se va produciendo el envejecimiento de las muestras, van apareciendo picos de difracción correspondientes a las zonas G.P que alcanzan un tamaño máximo y luego se convierten directamente en la fase del Zn\((hcp-\beta)\).

Para aleaciones con una concentración de zinc ya cercana a la eutectoide, 78%Zn, la solución sólida sobresaturada rica en zinc ahora denominada \(\varepsilon\), posee un estructura triclínica y se transforma en las fases estables Al\((fcc-\alpha)\) y Zn\((hcp-\beta)\) siguiendo la siguiente secuencia [159, 160]:

- \(\beta\) (triclínica) → \(\beta\) (hcp) + R-fase (romboédrica)
- R-fase (romboédrica) → Zn\((hcp-\beta)\) + Al\((fcc-\alpha)\)
Sandoval Jiménez observó que, tras un proceso de enfriamiento rápido de la aleación 78%Zn-Al con posterior envejecimiento se obtenían mediante difracción de rayos-X una serie de picos que no se obtenían en la muestra simplemente enfriada y sin envejecer, es decir, que además de los picos correspondientes a las fases del Zn(hcp-β) y del Al(fcc-α) se obtenían otros picos con intensidades cercanas a los picos correspondientes a los planos (111), (200), y (200) del aluminio y a los picos del zinc correspondientes a la difracción de los planos (100) y (102).

En cuanto a las reacciones invariantes que tienen lugar en este sistema binario zinc-aluminio, éstas tienen lugar a la temperatura de 381ºC, reacción eutéctica \(L \leftrightarrow Al(fcc-\alpha') + Zn(hcp-\beta) \), y a 277ºC, una reacción eutectoide \(Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) \) [161-165].

En la tabla 6, se presenta el resumen del sistema Zinc-Aluminio, indicando las reacciones que tienen lugar junto con las temperaturas y composiciones de las fases que intervienen en las mismas.

Tabla 6. Resumen sistema Zn-Al

<table>
<thead>
<tr>
<th>Reacción</th>
<th>Composición en %Zn</th>
<th>Temperatura</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L \leftrightarrow Al(fcc-\alpha') + Zn(hcp-\beta))</td>
<td>94 83,1 98,8</td>
<td>381</td>
<td>Eutéctica</td>
</tr>
<tr>
<td>(Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta))</td>
<td>77,7 32,4 99,3</td>
<td>277</td>
<td>Eutectoide</td>
</tr>
<tr>
<td>(Al(fcc-\alpha) \leftrightarrow Al(fcc-\alpha) + Al(fcc-\alpha'))</td>
<td>39,5</td>
<td>351,5</td>
<td>Crítico</td>
</tr>
<tr>
<td>(L \leftrightarrow Al(fcc-\alpha))</td>
<td>-</td>
<td>660,4</td>
<td>Fusión</td>
</tr>
<tr>
<td>(L \leftrightarrow Zn(hcp-\beta))</td>
<td>100</td>
<td>419,6</td>
<td>Fusión</td>
</tr>
</tbody>
</table>
3.7.2 Aleación Al-Bi.

El sistema aluminio-bismuto, que está representado en la figura 28, se caracteriza por una amplia región de inmicibilidad en el estado líquido por debajo de la temperatura crítica de 1037°C \[166\], y por una escasa solubilidad en estado sólido en las soluciones sólidas terminales, \(\text{Al(fcc-}\alpha)\) y \(\text{Bi (romb) }\). En este sistema se pueden distinguir dos reacciones invariantes: reacción monotéctica a \(\sim 657\text{°C }\) \[167, 168\]: \(L \leftrightarrow \text{Al(fcc-}\alpha)\) + \(L\) y una reacción eutéctica a \(\sim 270\text{°C }\): \(L \leftrightarrow \text{Al(fcc-}\alpha)\) + \(\text{Bi(romb) }\) \[166, 169-172\].

![Diagrama de fases Al-Bi y estructura cristalina del bismuto, rombódrica \[171\].](image)

En la tabla 7 se refleja un resumen del sistema Aluminio-Bismuto, mostrando las reacciones que tienen lugar, composiciones de las fases implicadas y las temperaturas a las cuales tienen lugar las diferentes reacciones y procesos.

Tabla 7. Resumen sistema Al-Bi

<table>
<thead>
<tr>
<th>Reacción</th>
<th>Composición en %Bi</th>
<th>Temperatura</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L \leftrightarrow \text{Al(fcc-}\alpha) + L)</td>
<td>0,45 0,02 84</td>
<td>657</td>
<td>Monotéctica</td>
</tr>
<tr>
<td>(L \leftrightarrow \text{Al(fcc-}\alpha) + \text{Bi(romb)})</td>
<td>99,5 0 100</td>
<td>270</td>
<td>Eutéctica</td>
</tr>
<tr>
<td>(\text{Al(fcc-}\alpha))</td>
<td>-</td>
<td>660</td>
<td>Fusión</td>
</tr>
<tr>
<td>(\text{Bi(romb)})</td>
<td>-</td>
<td>271</td>
<td>Fusión</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fase</th>
<th>Composición en %Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Al(fcc-}\alpha))</td>
<td>0 ~ 0,03</td>
</tr>
<tr>
<td>(\text{Bi(romb)})</td>
<td>100</td>
</tr>
</tbody>
</table>
Existen estudios acerca de la transformación monotéctica, tanto en las aleaciones binarias como en ternarias, así Nestler y col [173], proponen para el sistema Al-Bi dos mecanismos para la misma: \(L_1 \rightarrow L_2 + S \), y el otro \(L \rightarrow L_1 + L_2 \) llamada descomposición espinodal, planteando modelos matemáticos para ambos mecanismos. La presencia de este tipo de transformación hace que el líquido rico en bismuto, aun sin solidificar, se sitúe en la matriz del aluminio, ya solidificado, en forma de glóbulos [174] o en forma de fibras [175, 176], o una mezcla de ellas, en forma de collar de perlas [177]; estas morfologías aparecen en función de la velocidad de enfriamiento y del gradiente de temperatura situado por delante de la interfase sólido-líquido [178].

3.7.3 Aleación Zn-Bi.

El sistema zinc-bismuto representado en la figura 29 [179], también se caracteriza por una amplia región de inmiscibilidad en el estado líquido por debajo de la temperatura crítica de \(\sim 576^\circ C \) [180-182], y por una escasa o nula solubilidad en estado sólido en las soluciones sólidas terminales, \(Zn(hcp-\beta) \) y \(Bi(romboédrica) \). En este sistema se pueden distinguir dos reacciones invariantes: reacción monotéctica a \(\sim 416^\circ C: L \leftrightarrow Zn(hcp-\beta) + L \) [183] y una reacción eutéctica a \(\sim 254^\circ C: L \leftrightarrow Zn(hcp-\beta) + Bi(romboédrica) \) [172, 184-187].

![Figura 29. Diagrama de fases Zn-Bi [179].](image)

En la tabla 8, se resumen todos los datos relevantes de temperatura y composiciones del sistema Zinc-Bismuto.
3.7.4 Aleación Zn-Al-Bi.

El diagrama de fases del sistema ternario compuesto por los elementos Zn-Al-Bi propuesto por Gröbner y Mirkovic [30, 31], junto con las reacciones invariantes que tienen lugar en él, se representa en la figura 30 a) y 30 b).

De los cálculos termodinámicos realizados por Gröbner y Mirkovic [30, 31] se extrae que la aleación ternaria Zinc-Aluminio-Bismuto presenta dos fases líquidas, L y L''. Esto hace que este tipo de aleación solidifique siguiendo dos caminos diferentes.

El líquido denotado como L' dará lugar a las transformaciones monotéctica y eutectoide y el líquido denotado como L'' dará lugar exclusivamente a la transformación eutéctica ternaria.
DESARROLLO EXPERIMENTAL
4 DESARROLLO EXPERIMENTAL

La realización experimental del trabajo de investigación se ha basado en las partes que se detallan a continuación

4.1 Estudio Termodinámico

El programa que se ha utilizado en este trabajo para el cálculo termodinámico es el Thermo-Calc [188]. Se trata de un programa flexible que trabaja con una serie de bases de datos que recogen abundante información sobre equilibrios de fases, diagramas de fases, potenciales químicos, etc. Este programa está basado en un método de minimización de la energía libre de Gibbs, para llevar a cabo los cálculos de equilibrio y deducir el resultado del proceso que se está simulando.

Este programa se ha utilizado para simular el diagrama completo de fases del sistema zinc-aluminio, y para ver la evolución de las diferentes fases presentes a una composición dada y en función de la temperatura. El objetivo de la realización de estas simulaciones es poder comparar los datos obtenidos con los recogidos en la bibliografía y con los obtenidos en el desarrollo del actual trabajo.

4.2 Estudio microestructural de las aleaciones base

Del diagrama de fases binario Zinc-Aluminio, se escogen cinco composiciones localizadas en diferentes regiones del diagrama cuyas composiciones son:

- 20% Zinc-80% Aluminio.
- 40% Zinc-60% Aluminio.
- 85% Zinc-15% Aluminio.
- 94% Zinc-6% Aluminio.
- 96% Zinc-4% Aluminio.

Estos estudios se han realizado para poder identificar las distintas fases presentes y su distribución a lo largo de toda la muestra.
Como ya se ha comentado anteriormente, la aleación objeto de estudio es la formada por el zinc y el aluminio cuyo diagrama de fases se muestra en la figura 31.

Figura 31. Diagrama de fases Zn-Al [161].

De todo el rango de composiciones del diagrama binario zinc-aluminio, se ha trabajado, con una aleación de composición hipoeutéctica, (85%Zn-15%Al) que se corresponde con la línea verde en el diagrama, de la figura 31; con una aleación de composición eutéctica (94%Zn-6%Al), que se corresponde con la línea roja en el diagrama, con una aleación de composición hipereutéctica, (96%Zn-4%Al), que se corresponde con la línea azul en el diagrama de fases, otra aleación de composición (20%Zn-80%Al) situada en el campo de la solución sólida Al(fcc-α) y que se corresponde con la línea negra y por último, una aleación de composición (40%Zn-60%Al), que se encuentra en campo [Al(fcc-α) + Al(fcc-α')], representada por una línea de color naranja.

Las diferentes aleaciones han sido suministradas por NORMESA, una empresa ubicada en el país Vasco dedicada a la fabricación de aleaciones no férrreas.
4.3 Preparación y caracterización de muestras

Para realizar el estudio microestructural de las aleaciones cuyas composiciones se han detallado anteriormente, es necesario una preparación previa del material. Las aleaciones que son adquiridas externamente, llegan en forma de lingote con unas dimensiones aproximadas de 20cm x 4cm x 2cm, por tanto hay que proceder al corte de dichos lingotes en tamaños lo suficientemente pequeños para poder trabajar. Una vez cortados los lingotes, se escoge material de cada tipo de aleación: (85%Zn-15%Al); (94%Zn-6%Al), (96%Zn-4%Al), (20%Zn-80%Al), (40%Zn-60%Al) y se introducen en unos pequeños crisoles de alúmina. Para cada tipo de aleación se funden muestras en dos crisoles, ya que una vez fundidas las aleaciones, uno de los crisoles se va dejar enfriar en el interior del propio horno y el otro se va a dejar enfriar al aire. La muestra del crisol enfriada en el interior del horno sufrirá un proceso de solidificación más lento que la muestra del crisol enfriada al aire, en la cual tendrá lugar una solidificación mucho más rápida. Con este procedimiento se pretende observar el efecto del tipo de enfriamiento en la microestructura de la aleación.

Un esquema del procedimiento experimental seguido, se muestra en la figura 32.

CALENTAMIENTO

![Esquema del procedimiento experimental, proceso de fusión de muestras.](image)
En la tabla 9, se resumen las temperaturas alcanzadas en el proceso de fusión para cada una de las cinco aleaciones que van a ser objeto de estudio en este trabajo de investigación.

Tabla 9. Resumen de las temperaturas de trabajo de las aleaciones escogidas.

<table>
<thead>
<tr>
<th>Aleación</th>
<th>Temperatura (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%Zn-80%Al</td>
<td>680</td>
</tr>
<tr>
<td>40%Zn-60%Al</td>
<td>660</td>
</tr>
<tr>
<td>96%Zn-4%Al</td>
<td>420</td>
</tr>
<tr>
<td>94%Zn-6%Al</td>
<td>430</td>
</tr>
<tr>
<td>85%Zn-15%Al</td>
<td>480</td>
</tr>
</tbody>
</table>

La temperatura de fusión la marca el diagrama de fases y para estar seguros de que todo el material se fundía, la temperatura alcanzada fue 30 grados por encima de la línea de líquidos de cada aleación. Una vez fundido el material, se mantuvo la temperatura durante aproximadamente 30 minutos. A continuación, se apagó el horno de mufla, y uno de los crisoles se dejó dentro del horno para que su enfriamiento fuese lo más lento posible, y el otro crisol se sacó al exterior, para que su enfriamiento fuese más rápido. En la figura 33 se muestra el esquema del enfriamiento seguido.

Figura 33. Esquema del proceso de enfriamiento de las muestras de aleaciones.
Una vez enfriadas los dos tipos de muestras, se embutieron en una resina de cobre y se procedió al desbaste con papel de SiC de granulometría (220, 320, 400, y 600) y al pulido con alúmina de 6 µm y 3µm. Por último, se limpiaron las muestras embutidas en ultrasonidos con metanol, con el fin de eliminar los posibles restos de alúmina que pudieran quedar. Un esquema de las muestras preparadas para su caracterización se representa en la figura 34.

Figura 34. Esquema de las muestras preparadas para su caracterización

A partir de aquí y durante todo el documento, las muestras enfriadas en el interior del horno se denotarán como Muestra A, y las muestras enfriadas al aire, como Muestra B.

Para su posterior caracterización microestructural por microscopía óptica y electrónica de barrido, se procedió a realizar un ataque químico usando como reactivo de ataque una mezcla de 5 ml Ácido clorhídrico + 95 ml Etanol.

Una vez atacadas las muestras, se caracterizaron mediante microscopía óptica, el equipo empleado ha sido un microscopio metalográfico de la marca Leica, modelo DM IRM, con una resolución de 0,5µm, y se pudo observar la microestructura, la forma y tamaños de las dendritas y las fases presentes.
Y posteriormente se caracterizaron las muestras mediante microscopía electrónica de barrido (SEM Scanning Electron Microscopy), para ello se usó el microscopio “JEOL JSM 6400” apoyado por el análisis de Espectroscopía de dispersión de energías EDX (JM LINK).

4.4 Estudio microestructural de las aleaciones base con la adición de bismuto

Una vez caracterizadas la aleaciones base, se pasó a la adición de ciertas cantidades de bismuto con el fin de estudiar su incorporación a las aleaciones base.

El procedimiento de preparación de muestras realizado para las aleaciones base, se repitió para las aleaciones base con las adiciones de un 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 30%, 40%, 50% y 60% de bismuto. Estas adiciones se realizan tomando como el 100% el peso de la aleación inicial Zn-Al, por tanto, habrá que recacular luego las composiciones reales de cada elemento.

Un esquema de las adiciones realizadas se muestra a continuación.

- 20%Zinc-80%Aluminio + (10%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi y 60%Bi).
- 40%Zinc-60%Aluminio + (10%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi y 60%Bi).
- 85%Zinc-15%Aluminio + (2%Bi, 4%Bi, 6%Bi, 8%Bi, 10%Bi, 12%Bi, 14%Bi, 16%Bi, 18%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi y 60%Bi).
- 94%Zinc-6%Aluminio + (2%Bi, 4%Bi, 6%Bi, 8%Bi, 10%Bi, 12%Bi, 14%Bi, 16%Bi, 18%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi y 60%Bi).
- 96%Zinc-4%Aluminio + (2%Bi, 4%Bi, 6%Bi, 8%Bi, 10%Bi, 12%Bi, 14%Bi, 16%Bi, 18%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi y 60%Bi).

La representación de todas estas composiciones se muestra en el diagrama ternario Zinc-Aluminio-Bismuto de la figura 35.
En las tablas 10-14, se resumen las composiciones del zinc, aluminio y bismuto para cada uno de los cinco grupos de aleaciones estudiadas de composiciones: (85%Zn-15%Al); (94%Zn-6%Al), (96%Zn-4%Al), (20%Zn-80%Al) y (40%Zn-60%Al).

Tabla 10. Resumen de las composiciones estudiadas para el grupo de aleaciones 20%Zn-80%Al

<table>
<thead>
<tr>
<th>ALEACIÓN 20%Zn-80%Al</th>
<th>Composición Zn (%)</th>
<th>Composición Al (%)</th>
<th>Composición Bi (%)</th>
<th>Bi añadido (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,2</td>
<td>72,7</td>
<td>9,1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>16,7</td>
<td>66,7</td>
<td>16,7</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>15,4</td>
<td>61,5</td>
<td>23,1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>14,3</td>
<td>57,1</td>
<td>28,6</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>13,3</td>
<td>53,3</td>
<td>33,3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>12,5</td>
<td>50,0</td>
<td>37,5</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Figura 35. Diagrama Zn-Bi-Al mostrando las composiciones elegidas para el presente estudio
Tabla 11. Resumen de las composiciones estudiadas para el grupo de aleaciones 40%Zn-60%Al

<table>
<thead>
<tr>
<th>Composición Zn (%)</th>
<th>Composición Al (%)</th>
<th>Composición Bi (%)</th>
<th>Bi añadido (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36,4</td>
<td>54,5</td>
<td>9,1</td>
<td>10</td>
</tr>
<tr>
<td>33,3</td>
<td>50,0</td>
<td>16,7</td>
<td>20</td>
</tr>
<tr>
<td>30,8</td>
<td>46,2</td>
<td>23,1</td>
<td>30</td>
</tr>
<tr>
<td>28,6</td>
<td>42,9</td>
<td>28,6</td>
<td>40</td>
</tr>
<tr>
<td>26,7</td>
<td>40,0</td>
<td>33,3</td>
<td>50</td>
</tr>
<tr>
<td>25,0</td>
<td>37,5</td>
<td>37,5</td>
<td>60</td>
</tr>
</tbody>
</table>

Tabla 12. Resumen de las composiciones estudiadas para el grupo de aleaciones 85%Zn-15%Al

<table>
<thead>
<tr>
<th>Composición Zn (%)</th>
<th>Composición Al (%)</th>
<th>Composición Bi (%)</th>
<th>Bi añadido (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>83,3</td>
<td>14,7</td>
<td>2,0</td>
<td>2,0</td>
</tr>
<tr>
<td>81,7</td>
<td>14,4</td>
<td>3,8</td>
<td>4,0</td>
</tr>
<tr>
<td>80,2</td>
<td>14,2</td>
<td>5,7</td>
<td>6,0</td>
</tr>
<tr>
<td>78,7</td>
<td>13,9</td>
<td>7,4</td>
<td>8,0</td>
</tr>
<tr>
<td>77,3</td>
<td>13,6</td>
<td>9,1</td>
<td>10,0</td>
</tr>
<tr>
<td>75,9</td>
<td>13,4</td>
<td>10,7</td>
<td>12,0</td>
</tr>
<tr>
<td>74,6</td>
<td>13,2</td>
<td>12,3</td>
<td>14,0</td>
</tr>
<tr>
<td>73,3</td>
<td>12,9</td>
<td>13,8</td>
<td>16,0</td>
</tr>
<tr>
<td>72,0</td>
<td>12,7</td>
<td>15,3</td>
<td>18,0</td>
</tr>
<tr>
<td>70,8</td>
<td>12,5</td>
<td>16,7</td>
<td>20,0</td>
</tr>
<tr>
<td>65,4</td>
<td>11,5</td>
<td>23,1</td>
<td>30,0</td>
</tr>
<tr>
<td>60,7</td>
<td>10,7</td>
<td>28,6</td>
<td>40,0</td>
</tr>
<tr>
<td>56,7</td>
<td>10,0</td>
<td>33,3</td>
<td>50,0</td>
</tr>
<tr>
<td>53,1</td>
<td>9,4</td>
<td>37,5</td>
<td>60,0</td>
</tr>
</tbody>
</table>
Tabla 13. Resumen de las composiciones estudiadas para el grupo de aleaciones 94%Zn-6%Al

<table>
<thead>
<tr>
<th>Composición Zn (%)</th>
<th>Composición Al (%)</th>
<th>Composición Bi (%)</th>
<th>Bi añadido (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92,2</td>
<td>5,9</td>
<td>2,0</td>
<td>2</td>
</tr>
<tr>
<td>90,4</td>
<td>5,8</td>
<td>3,8</td>
<td>4</td>
</tr>
<tr>
<td>88,7</td>
<td>5,7</td>
<td>5,7</td>
<td>6</td>
</tr>
<tr>
<td>87,0</td>
<td>5,6</td>
<td>7,4</td>
<td>8</td>
</tr>
<tr>
<td>85,5</td>
<td>5,5</td>
<td>9,1</td>
<td>10</td>
</tr>
<tr>
<td>83,9</td>
<td>5,4</td>
<td>10,7</td>
<td>12</td>
</tr>
<tr>
<td>82,5</td>
<td>5,3</td>
<td>12,3</td>
<td>14</td>
</tr>
<tr>
<td>81,0</td>
<td>5,2</td>
<td>13,8</td>
<td>16</td>
</tr>
<tr>
<td>79,7</td>
<td>5,1</td>
<td>15,3</td>
<td>18</td>
</tr>
<tr>
<td>78,3</td>
<td>5,0</td>
<td>16,7</td>
<td>20</td>
</tr>
<tr>
<td>72,3</td>
<td>4,6</td>
<td>23,1</td>
<td>30</td>
</tr>
<tr>
<td>67,1</td>
<td>4,3</td>
<td>28,6</td>
<td>40</td>
</tr>
<tr>
<td>62,7</td>
<td>4,0</td>
<td>33,3</td>
<td>50</td>
</tr>
<tr>
<td>58,8</td>
<td>3,8</td>
<td>37,5</td>
<td>60</td>
</tr>
</tbody>
</table>

Tabla 14. Resumen de las composiciones estudiadas para el grupo de aleaciones 96%Zn-4%Al

<table>
<thead>
<tr>
<th>Composición Zn (%)</th>
<th>Composición Al (%)</th>
<th>Composición Bi (%)</th>
<th>Bi añadido (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>94,1</td>
<td>3,9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>92,3</td>
<td>3,8</td>
<td>3,8</td>
<td>4</td>
</tr>
<tr>
<td>90,6</td>
<td>3,8</td>
<td>5,7</td>
<td>6</td>
</tr>
<tr>
<td>88,9</td>
<td>3,7</td>
<td>7,4</td>
<td>8</td>
</tr>
<tr>
<td>87,3</td>
<td>3,6</td>
<td>9,1</td>
<td>10</td>
</tr>
<tr>
<td>85,7</td>
<td>3,6</td>
<td>10,7</td>
<td>12</td>
</tr>
<tr>
<td>84,2</td>
<td>3,5</td>
<td>12,3</td>
<td>14</td>
</tr>
<tr>
<td>82,8</td>
<td>3,4</td>
<td>13,8</td>
<td>16</td>
</tr>
<tr>
<td>81,4</td>
<td>3,4</td>
<td>15,3</td>
<td>18</td>
</tr>
<tr>
<td>80,0</td>
<td>3,3</td>
<td>16,7</td>
<td>20</td>
</tr>
<tr>
<td>73,8</td>
<td>3,1</td>
<td>23,1</td>
<td>30</td>
</tr>
<tr>
<td>68,6</td>
<td>2,9</td>
<td>28,6</td>
<td>40</td>
</tr>
<tr>
<td>64,0</td>
<td>2,7</td>
<td>33,3</td>
<td>50</td>
</tr>
<tr>
<td>60,0</td>
<td>2,5</td>
<td>37,5</td>
<td>60</td>
</tr>
</tbody>
</table>

En total, se estudian y caracterizan 59 muestras.
4.5 Análisis térmicos Diferenciales

Para la caracterización de las diferentes aleaciones se realizaron ensayos térmicos diferenciales de forma programada, para ello se utilizó el equipo SDT- Q600 mediante el cual se pueden obtener:

- Las curvas de calentamiento y enfriamiento de las muestras sometidas a ensayo.
- Las energías puestas en juego en las curvas de enfriamiento y calentamiento.
- Temperatura a la cual se produjeron todos los cambios o transformaciones en las aleaciones.

Inicialmente se realizaron ensayos térmicos para las aleaciones base de composiciones: (85%Zn-15%Al); (94%Zn-6%Al), (96%Zn-4%Al), (20%Zn-80%Al), (40%Zn-60%Al) sin la adición de bismuto, de esta forma se obtiene el blanco del ensayo para poder compararlos más adelante con las curvas obtenidas para las diferentes adiciones de bismuto.

A continuación se estudió el efecto de la adición del bismuto, tanto en las reacciones invariantes, como en las temperaturas y flujos de calor puestos en juego en las aleaciones de Zinc-Aluminio:

- **ENSAYOS DEL TIPO DSC-DTA**
 - **20%Zinc-80%Aluminio** (base) + (10%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi y 60%Bi).
 - **40%Zinc-60%Aluminio** (base) + (10%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi y 60%Bi).
 - **96%Zinc-4%Aluminio** (base) + (2%Bi, 4%Bi, 6%Bi, 8%Bi, 10%Bi, 12%Bi, 14%Bi, 16%Bi, 18%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi y 60%Bi).
 - **94%Zinc-6%Aluminio** (base) + (2%Bi, 4%Bi, 6%Bi, 8%Bi, 10%Bi, 12%Bi, 14%Bi, 16%Bi, 18%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi y 60%Bi).
 - **96%Zinc-4%Aluminio** + (2%Bi, 4%Bi, 6%Bi, 8%Bi, 10%Bi, 12%Bi, 14%Bi, 16%Bi, 18%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi y 60%Bi).
Para esta parte del desarrollo experimental, hubo que tener cuidado en la preparación de las muestras, puesto que al ser un equipo muy sensible, el tamaño de las muestras es un parámetro sensible en los resultados y éste tiene que ser bastante pequeño, 100mg, cantidad máxima que permite el equipo introducir para realizar cualquier tipo de ensayo.

Para el desarrollo de los ensayos térmicos, como se ha indicado anteriormente, se obtuvieron muestras de no más de 100 mg cada una, se introdujeron en el equipo en el interior de un crisol y se realizó la correspondiente rampa de calentamiento y enfriamiento. Los resultados quedan reflejados en el propio equipo y luego son tratados mediante el programa “TA Universal analysis” en un ordenador anexo al equipo, como se muestra en la figura 36.

Figura 36. Esquema del equipo SDT-Q600 utilizado para la realización de los ensayos térmicos. a) Ordenador para controlar los ensayos; b) Imagen del equipo SDT-Q600; c) aspecto del operador ubicando una muestra en el interior del equipo; d) imagen de la estructura interna del equipo; d) imagen de uno de los termopares con el crisol situado encima de él; e)crisoles de alúmina y platino donde se ubican las muestras a ensayar.
En la figura 36 se muestra en la imagen a) un ordenador tipo al que va conectado el equipo calorimétrico mostrado en la figura b). La imagen c) se muestra cómo se introduce un crisol con su muestra correspondiente en el interior del equipo calorimétrico. La imagen d) es un esquema del interior del equipo calorimétrico, y en ella se observa el horno situado de forma horizontal y los brazos de medida. La imagen e) muestra el termopar y el crisol situado encima de él. Y en la imagen f), se muestran los crisoles de platino y alúmina, los cuales han sido utilizados para el desarrollo de los ensayos térmicos.

El equipo mostrado en la imagen b) figura 36, ofrece como ventaja la posibilidad de suministrar las señales de DTA (análisis térmicos diferenciales), DSC (calorimetría de barrido diferencial) y la de TGA (análisis termogravimétrico) de forma simultánea. Por contra le quita sensibilidad al equipo.

El programa de calentamiento y enfriamiento que se ha seguido para todos los ensayos es el siguiente:

- Rampa de calentamiento de 5ºC/min hasta 500ºC o 700ºC (en función de la muestra).
- Equilibrado hasta 45ºC.

El gas utilizado para estos ensayos ha sido el argón, un gas inerte. En la figura 36 se muestra en la imagen a) un ordenador tipo al que va conectado el equipo calorimétrico mostrado en la figura b). La imagen c) de la figura 63 muestra como se introduce un crisol con su muestra correspondiente en el interior del equipo calorimétrico. La imagen d) es un esquema del interior del equipo calorimétrico, se observa el horno situado de forma horizontal y los brazos de medida. La imagen e) de la figura 36 muestra el termopar y el crisol situado encima de él. Y en la imagen f), se muestra los crisoles de platino y alúmina, los cuales han sido utilizados para el desarrollo de los ensayos térmicos.

El equipo mostrado en la imagen b) figura 36, ofrece la posibilidad de dar las señales de DTA (análisis térmicos diferenciales), DSC (calorimetría de barrido diferencial) y la de TGA (análisis termogravimétrico) de forma simultánea.
Los crisoles donde se ubica a la muestra que va ser ensayada son del tipo alúmina, un material inerte y que soporta elevadas temperaturas.

Los resultados obtenidos en cada ensayo serán analizados y discutidos más adelante.
RESULTADOS Y DISCUSIÓN
5 RESULTADOS Y DISCUSIÓN

5.1 Simulación termodinámica de la aleación base 20%Zn-80%Al.

En la figura 37 se muestra el diagrama de fases binario del sistema Zinc-Aluminio obtenido mediante el programa de simulación termodinámica Thermo-Calc [188]. Con una línea roja discontinua se marca la composición que se va a discutir en esta sección, 20%Zn-80%Al y con los puntos 1-6, las zonas desarrolladas en la figura 38.

Figura 37. Diagrama de fases del sistema Zinc-Aluminio, obtenido mediante simulación termodinámica con el software Thermo-Calc [188].

Y en la figura 38, se muestra la evolución de las fases presentes con la temperatura.

Figura 38. Variación de las fases presentes en el sistema 20%Zn-80%Al con la temperatura [188].
En la figura 38 se distinguen los puntos donde se producen cambios significativos en la composición de las fases. Estos puntos se denotan con los números del 1 al 6, y los valores correspondientes de temperatura y composición de las fases se resumen en la tabla 15.

Tabla 15. Resumen de los cambios principales que tienen lugar en la aleación base 20%Zn-80%Al

<table>
<thead>
<tr>
<th>Punto Interés</th>
<th>T(ºC)</th>
<th>Líquido</th>
<th>Al (fcc-α)</th>
<th>Al (fcc-α’)</th>
<th>Zn (hcp-β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>586</td>
<td>0,93</td>
<td>0,065</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>509</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>317</td>
<td>0</td>
<td>0,99</td>
<td>5,24E-04</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>277</td>
<td>0</td>
<td>0,93</td>
<td>0</td>
<td>0,070</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>0</td>
<td>0,81</td>
<td>0</td>
<td>0,18</td>
</tr>
</tbody>
</table>

Si se observan en conjunto las figuras 37 y 38 y siguiendo la línea roja discontinua que representa el proceso hipotético de solidificación, a la temperatura de 700ºC (Punto 1), toda la aleación se encuentra en estado líquido hasta que la temperatura desciende a los 589ºC, donde se cruza la línea de líquidos y comienza a formarse la fase Al(fcc-α), (solución sólida de Zn en Al), a medida que disminuye la temperatura la composición del líquido disminuye y la de la fase Al(fcc-α) aumenta hasta llegar al punto 3 a 509ºC, donde todo el líquido se ha transformado en la fase Al(fcc-α). Esta composición se mantiene constante hasta llegar al punto 4 a la temperatura de 317ºC, donde se empieza a formar la fase Al(fcc-α’) en detrimento de la fase Al(fcc-α). En el punto 5 a la temperatura de 277ºC, tiene lugar la transformación eutectoide que da lugar a las fases Al(fcc-α) y Zn(hcp-β), la fase Al(fcc-α’) desaparece. El proceso de enfriamiento continua con una disminución de la fracción molar de la fase Al(fcc-α) y un aumento de la fase Zn(hcp-β), hasta el punto 6 a 100ºC, donde la composición de la fase Al(fcc-α) es de 0,81 y de la fase Zn(hcp-β) es de 0,18.

De acuerdo con los datos de composición del sistema Zinc-Aluminio obtenidos anteriormente mediante simulación con el software Thermo-Calc [188], y representados en las figuras 37 y 38, durante el proceso de enfriamiento de la aleación de composición 20%Zn-80%Al se cruza por los campos (L), [L + Al(fcc-α)], Al(fcc-α), [Al(fcc-α) + Al(fcc-α’)], [Al(fcc-α) + Zn(hcp-β)]. En cambio, si se tiene en cuenta la fuente bibliográfica de Murray [161] mostrada en la figura 39 y que datan de 1983, la
composición 20\%Zn-80\%Al, cruza los campos \((L)\), \([L + Al(fcc-\alpha)]\), \(Al(fcc-\alpha)\) y \([Al(fcc-\alpha) + Zn(hcp-\beta)]\), son diferentes.

Uno de los objetivos de actual trabajo es comparar los resultados obtenidos mediante la simulación con Thermo-Calc [188] con los datos obtenidos también mediante simulación por los autores Gröbner y Mirkovic del año 2005 [30, 31]. Estos autores utilizaron la base de datos (SGTE-SSOL) [189], que es una base de datos termodinámicos realizada para las fases condensadas de 78 elementos, están tabulados y la usan en la actualidad el grupo SGTE (Grupo Científico de los datos termodinámicos en Europa). Sgte es un consorcio de siete organizaciones en el oeste de Europa dedicada a la elaboración de una base de datos completa, coherente y fidedigna de los sistemas inorgánicos y metalúrgicos. Los datos se publican aquí con la esperanza de que lleguen a ser ampliamente adoptada dentro de la comunidad internacional como una base sólida para la evaluación crítica de los datos termodinámicos, por lo tanto, tal vez, para limitar la duplicación innecesaria de esfuerzos. De acuerdo con esta base de datos, el diagrama de fases que proponen Gröbner y Mirkovic en el año 2005 [30, 31] es el que se muestra en la figura 40.

Figura 39. Diagrama de fases del sistema Zinc-Aluminio._ASM Handbook [161].
En el diagrama de la figura 40, la aleación de composición 20%Zn-80%Al al enfriar, pasa por los campos Líquido, \([\text{Líquido} + (\text{Al}(\text{fcc-}\alpha))]\), \([(\text{Al}(\text{fcc-}\alpha) + (\text{Al}(\text{fcc-}\alpha'))\)] y por último \([\text{Al}(\text{fcc-}\alpha) + \text{Zn}(\text{hcp-}\beta)]\) es el mismo resultado que el obtenido con la simulación termodinámica con Thermo-Calc [188] y que se ha mostrado en las figuras 37 y 38. Por tanto, el diagrama de fases binario Zn-Al puede variar en función de la fuente bibliográfica, en este caso, las fases obtenidas con Thermo-Calc [188] son las mismas que las obtenidas por los autores Gröbner y Mirkovic [30, 31] y diferentes de las obtenidas por Murray [161].

Para los sistemas binarios Al-Bi, Al-Zn, Bi-Zn y el ternario Al-Bi-Zn, J. Gröbner y col. [30, 31], a modo de resumen proponen el esquema de la figura 41, en él, se reflejan las transformaciones que tienen lugar, especificando las fases y las temperaturas de las mismas.
Figura 41. Esquema de las transformaciones en los sistemas binarios y ternarios [30].

En las gráficas de las figuras 42 y 43, se muestran los diagramas de fases para los sistemas binarios Zinc-Bismuto y Aluminio-Bismuto respectivamente, obtenidos mediante Thermo-Calc [188], con el fin de compararlos con los obtenidos por Gröbner y Mirkovic [30, 31].

Figura 42. Diagrama de fases del sistema Zinc-Bismuto, obtenido mediante simulación termodinámica con el software Thermo-Calc [188].

El diagrama de fases binario del sistema Aluminio-Bismuto de la figura 70 obtenido mediante Thermo-Calc [188], muestra la existencia de las siguientes fases: líquido 1, líquido 2, Zn(hcp-β) y Bi(romb). Y dos transformaciones invariantes, una monotéctica a 416,4°C y una transformación eutéctica a 254,7°C.
Si se comparan estos datos con los obtenidos por Gröbner y Mirkovic [30, 31] y que se resumen en el cuadro de la figura 41, se observa que ambos resultados son prácticamente iguales.

En el diagrama de fases mostrado en la figura 43 para el sistema Aluminio-Bismuto, se observan la presencia de las fases líquido 1, líquido 2, Al(fcc-α) y Bi(romb), y una transformación monotéctica a 658,7°C y una eutéctica a 269,3°C. Comparando estos resultados obtenidos mediante Thermo-Calc [188] con los del cuadro de la figura 41 para el mismo sistema Aluminio-Bismuto, se observan pequeños cambios en las temperaturas de las transformaciones invariantes, aunque en ninguno de los casos la diferencia es mayor de 1°C. Por tanto, los datos obtenidos mediante la simulación termodinámica con Thermo-Calc [188] para los sistemas binarios Zinc-Bismuto y Aluminio-Bismuto son comparables con los obtenidos también de forma teórica por Gröbner y Mirkovic [30, 31].

5.2 Aleaciones 20%Zinc-80%Aluminio. Caracterización del Material Base.

Una vez realizada la simulación termodinámica y teniendo en cuenta las fases que se forman en esta aleación, se procedió a su caracterización microestructural.
En las imágenes de la figura 44, realizadas mediante microscopía óptica, se muestra el aspecto de la aleación base de composición 20%Zn-80%Al enfriada al aire, denominada como muestra B.

En las imágenes de la figura 44 se observan dos zonas claramente diferenciadas, una mayoritaria de color claro, y otra minoritaria, de color oscuro y rodeando la zona clara. La zona clara corresponde con la fase inicial Al(fcc-\(\alpha\)), que comienza a precipitar a la temperatura de 589ºC con morfología dendrítica hasta la temperatura de 317ºC, que es cuando comienza a formarse la fase Al(fcc-\(\alpha'\)), situándose en los espacios interdendríticos de la fase Al(fcc-\(\alpha\)).

Según la bibliografía [161], en el proceso de enfriamiento de la aleación 20%Zn-80%Al, la fase inicial Al(fcc-\(\alpha\)) mediante la transformación eutectoide pasa a [Al(fcc-\(\alpha\)) + Zn(hcp-\(\beta\))] o según otros autores [30, 31], la aleación primero se transforma en [Al(fcc-\(\alpha\)) + Al(fcc-\(\alpha'\))] y posteriormente por la reacción eutectoide se transforma en [Al(fcc-\(\alpha\)) + Zn(hcp-\(\beta\))]. Esta disyuntiva se aclarará más adelante mediante el análisis térmico, ya que si tiene lugar la reacción eutectoide, tendrá que aparecer un cambio en la señal térmica entorno a los 278ºC [30, 31, 161].

Una vez caracterizada la aleación base mediante microscopía óptica, se procedió a su caracterización mediante microscopía electrónica de barrido, SEM. La imagen de la figura 45, corresponde a la caracterización mediante SEM de la aleación base 20%Zn-80%Al.
Resultados y Discusión

En la imagen de la figura 45, se observa una zona mayoritaria más oscura y rodeándola, unas zonas de color más claro. Estas zonas de color más claro delimitan los límites de grano y es donde precipita inicialmente la fase $\text{Al(fcc-}\alpha')$ que posteriormente y al disminuir la temperatura, da lugar a las fases $[\text{Al(fcc-}\alpha) + \text{Zn(hcp-}\beta)]$ mediante la reacción eutectoide. El aspecto de la microestructura obtenido mediante SEM es similar al obtenido mediante microscopia óptica de la figura 44, donde se observaba una zona mayoritaria de color claro, que en este caso corresponde con la zona oscura de la figura 45 y la zona oscura de la figura 44 corresponde con las zonas claras de la figura 45.

Para caracterizar la aleación 20%Zn-80%Al mostrada en la figura 45, se han hecho dos análisis puntuales marcados con un punto negro y un punto rojo.

El análisis en el punto negro corresponde con la fase mayoritaria y el análisis en el punto rojo con la fase minoritaria. Los resultados se muestran en los espectros de las figuras 46 y 47.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Peso %</th>
<th>Atómico %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>52.45</td>
<td>72.77</td>
</tr>
<tr>
<td>Zn</td>
<td>47.55</td>
<td>27.23</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Peso %</th>
<th>Atómico %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>80.79</td>
<td>91.06</td>
</tr>
<tr>
<td>Zn</td>
<td>19.21</td>
<td>8.94</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Figura 45. Microestructura obtenida mediante Microscopía Electrónica de Barrido de la muestra B de aleación base 20%Zn-80%Al.

Figura 46. Microanálisis semi-cuantitativo por EDX (Energy- dispersive X-ray) para la aleación base 20%Zn-80%Al, en el punto rojo de la imagen de la figura 45.

Figura 47. Microanálisis semi-cuantitativo por EDX (Energy- dispersive X-ray) para la aleación base 20%Zn-80%Al, en el punto negro de la imagen de la figura 45.
El espectro de la figura 47 muestra que la fase mayoritaria observada en el SEM está constituida por una solución sólida Al-Zn, que corresponde con la composición de la fase $\text{Al}(\text{fcc}-\alpha)$.

El espectro de la figura 46 realizado en el punto rojo de la figura 45, revela una composición parecida para el aluminio y el zinc, en concreto 52.45% para el aluminio y un 47.55% para el zinc. Esta zona, que corresponde con la zona minoritaria de color oscuro en la figura 44 y de color claro en la figura 45 está constituida por la mezcla de las fases $[\text{Al}(\text{fcc}-\alpha) + \text{Zn}(\text{hcp}-\beta)]$ y constituyen los espacios interdendríticos.

Los resultados obtenidos de la caracterización microestructural de la aleación 20%Zn-80%Al realizada mediante microscopía óptica y SEM, se corresponden con las fases que predice la simulación termodinámica con Thermo-Calc [188] y los publicados en bibliografía [30, 31, 161].

El siguiente paso es la caracterización de la aleación base 20%Zn-80%Al mediante las técnicas de análisis térmico. El ensayo térmico comienza a temperatura ambiente y el equipo empieza a calentar la muestra a una velocidad de 5°C/min hasta llegar a 700°C, temperatura a la cual, termina la etapa de calentamiento y comienza la etapa de enfriamiento. Dado que el equipo no posee un sistema de refrigeración acoplado, el proceso de enfriamiento se realiza con la temperatura ambiente del laboratorio, 25°C. En figura 48 se representa la etapa de calentamiento del ensayo térmico realizado a una muestra de la aleación 20%Zn-80%Al.

Figura 48. Análisis térmico diferencial de la etapa de calentamiento de la aleación base 20%Zn-80%Al.
Resultados y Discusión

La curva de color verde de la figura 48 corresponde con la muestra que ha sido enfriada en el interior del horno, muestra A, y la curva de color rojo, con la muestra que ha sido enfriada al aire, muestra B. Sobre el pico obtenido en la figura 48, se indican las temperaturas de inicio, fin, máximo y de integración del mismo, que servirán luego para analizar los resultados obtenidos. Para todas las aleaciones que se van a discutir a lo largo de todo el documento, se tendrá en cuenta que la diferencia entre las temperaturas de inicio y final del pico será el rango de temperaturas en el cual tiene lugar la transformación que esté ocurriendo. En la figura 49 se representa la correspondiente etapa de enfriamiento del ensayo térmico realizado a una muestra de la aleación 20%Zn-80%Al, la curva roja corresponde con la muestra que ha sido enfriada al aire, muestra B y la curva verde con la muestra de la que sido enfriada en el interior del horno, muestra A.

![Figura 49. Análisis térmico diferencial de la etapa de enfriamiento de la aleación base 20%Zn-80%Al.](image)

Los resultados obtenidos por DTA reflejados en las curvas de las figuras 48 y 49, se recopilan en la tabla 16, además se distingue la muestra que ha sido enfriada en el interior el horno y que se ha llamado muestra A y la que ha sido enfriada al aire, llamada muestra B. En la parte derecha de la tabla 16 se muestra el tipo de cambio o transformación que tienen lugar para las muestras A y B.
De acuerdo a lo explicado en el apartado 1.5 de la introducción, para el análisis de los datos de temperatura obtenidos en el ensayo térmico, se van a tener en cuenta la temperatura de inicio y máxima del pico y además, la temperatura obtenida tras realizar la integración del pico, T.intg, y la temperatura de final del pico que es cuando se recupera la línea base.

Si nos fijamos en la curva verde de la figura 49, correspondiente a la muestra A, sólo se observa un cambio térmico, que corresponde con el inicio y fin de la solidificación de la aleación con formación de fase $Al(fcc-\alpha)$. La letra mayúscula U de la tabla 16 denota la transformación eutectoide, y todas sus casillas están vacías porque en el análisis térmico no se ha detectado el cambio en la temperatura relacionado con dicha transformación.

Los datos experimentales de temperatura de la tabla 16 difieren mucho en su valor de los datos de temperatura obtenidos mediante simulación termodinámica [188] mostrados en la tabla 15, ya que en las condiciones de experimentación no se trabaja en equilibrio termodinámico. Comparando los datos de temperatura obtenidos para la muestra A y la muestra B, hay una diferencia de 3°C, por tanto el tratamiento térmico que es la diferencia entre una muestra y otra, no influye de forma significativa en los datos de temperaturas obtenidos en el ensayo térmico.

Teniendo en cuenta el diagrama de la figura 37 obtenido mediante simulación termodinámica con Thermo-Calc [188], el diagrama de la figura 40 propuesto por Gröbner y Mirkovic [30, 31] y la composición teórica de partida, 20%Zn-80%Al, en el análisis térmico diferencial se deberían haber observado tres picos, uno correspondiente con el inicio y fin de la solidificación de la aleación con formación de fase $Al(fcc-\alpha)$ y que es el único observado, otro pico correspondiente con la transformación de la fase

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura</th>
<th>Datos de Temperatura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Etapa de Calentamiento (Fig.48)</td>
<td>Etapa de Enfriamiento (Fig.49)</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>T.intg (ºC)</td>
</tr>
<tr>
<td>A</td>
<td>562,01</td>
<td>596,75</td>
</tr>
<tr>
<td>B</td>
<td>568,07</td>
<td>599,06</td>
</tr>
</tbody>
</table>

Tabla 16. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA de la aleación base de composición 20%Zn-80%Al.
Al(fcc-α) en las fases \([Al(fcc-\alpha) + Al(fcc-\alpha')] \), y un último pico correspondiente con la temperatura de la reacción eutectoide, mediante la cual, la fase \(Al(fcc-\alpha') \) se transforma en las fases \([(Al(fcc-\alpha) + Zn(hcp-\beta)] \). Este hecho significa, que los datos experimentales obtenidos en el ensayo térmico no coinciden con los datos que predice la simulación termodinámica con Thermo-Cal [188] y la de la bibliografía [30, 31].

En la figura 50 se muestra el diagrama de fases binario del sistema Zinc-Aluminio obtenido por Thermo-Cal [188], y en él, se superponen los datos temperaturas obtenidos en el presente trabajo a través de los ensayos térmicos, con los obtenidos con el propio Thermo-Cal [188] y con los datos de bibliografía [30, 31].

![Diagrama de fases del sistema Zinc-Aluminio, obtenido mediante simulación termodinámica con el software Thermo-Cal [188].](image)

Como se observa en la figura 50, los datos experimentales de temperatura obtenidos mediante los ensayos térmicos para la aleación 20%Zn-80%Al del presente trabajo, están desplazados hacia la izquierda en el diagrama de fases si se comparan con los datos de temperaturas que proponen Gröbner y col. [30, 31], Thermo-Cal [188] y Murray [161]. Los datos obtenidos con Thermo-Cal [188] y por Gröbner y col. [30, 31], son prácticamente idénticos y los datos de temperaturas de Murray [161], son a los que más se acercan los obtenidos en el presente trabajo.
El punto correspondiente al presente trabajo cercano a los 200°C que corresponde con la transformación de la fase $\text{Al(fcc-} \alpha \text{)}$ en las fases $[\text{Al(fcc-} \alpha \text{)} + \text{Zn(hcp-} \beta \text{)}]$ y que se encuentra en forma de círculo rojo discontinuo en la figura 50, se representa así, porque no se ha obtenido experimentalmente en el ensayo térmico, ya que no se ha detectado el pico correspondiente a ese punto que marca la curva de solvus. Este hecho es debido a que la transformación anteriormente citada lleva asociada tan poca energía que el equipo no la detecta y no se obtiene ningún pico asociado a la misma.

En cuanto a la temperatura de la transformación eutectoide, los únicos datos comparables son los obtenidos por Gröbner [30, 31] de 277,2°C y la temperatura obtenida mediante Thermo-Calc [188] de 276,9°C, ambas temperaturas son muy cercanas entre sí.

5.3 Simulación termodinámica de la aleación 20%Zn-80%Al + Adiciones de Bi.

Una vez realizada la simulación termodinámica con Thermo-Calc [188], la caracterización microestructural y el estudio térmico para la aleación base de composición 20%Zn-80%Al, se realizan las simulaciones termodinámicas a las aleaciones resultantes de la adición de bismuto a dicha aleación base.

El diagrama ternario de la figura 51 obtenido mediante Thermo-Calc [188], muestra las fases presentes en el sistema Zinc-Bismuto-Aluminio a una temperatura ligeramente superior a la transformación monotéctica, que de acuerdo a la bibliografía [30, 31], esta transformación tiene lugar a la temperatura de 376°C.

En este apartado se discutirán los resultados obtenidos para las aleaciones 20%Zn-80%Al + adiciones de bismuto. Todas las aleaciones resultantes se sitúan en la parte inferior de la gráfica de la figura 51, las composiciones de cada componente se resumen en la tabla situada a la izquierda del diagrama ternario.
Resúmenes y Discusión

De acuerdo al diagrama de la figura 51 a la temperatura de 379°C, se encuentran la fase líquida denotada como L'', y la fase $\text{Al(fcc-} \alpha)$ que ya ha empezado a precipitar.

En la figura 52, se muestra el diagrama ternario Zinc-Bismuto-Aluminio correspondiente a la temperatura 300°C, que es una temperatura intermedia entre la transformación monotéctica y la próxima transformación que es la eutectoide.

Figura 51. Isoterma a 379°C, justo por encima de la transformación Monotéctica [188]

El diagrama de la figura 52 muestra que a la temperatura de 300°C, uno de los líquidos ya ha desaparecido, y sólo se refleja un líquido denotado como L''. También están presente la fase $\text{Al(fcc-} \alpha)$ y aparece la fase $\text{Al(fcc-} \alpha')$.
La fase correspondiente al zinc no se encuentra para esta isoterma a 300°C, esto quiere decir, que para el grupo de aleaciones 20%Zn-80%Al + adiciones de bismuto no tiene lugar la transformación monotéctica.

En la gráfica de la figura 53, se muestra ahora la isoterma a 270°C, que es una temperatura intermedia entre la transformación eutectoide y la eutéctica ternaria.

Figura 53. Isoterma a 270°C, entre la transformación Eutectoide y Eutéctica [188].

A la temperatura de 270°C, se encuentra aún la fase líquida denotada como \(L'' \), y por otro lado se encuentran las fases \(Al(fcc-\alpha) \) y \(Zn(hcp-\beta) \), denotadas en la gráfica 53 como \(\alpha \) y \(\beta \) respectivamente. Mediante la transformación eutectoide, que tiene lugar a 278,1°C según Gröbner y Mirkovic [30, 31], la fase \(Al(fcc-\alpha') \) se transforma en la fases \(Al(fcc-\alpha) \) y \(Zn(hcp-\beta) \) mediante la reacción \(Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) \).

Por último, en la gráfica de la figura 54, se representa la isoterma a 240°C del sistema ternario Zinc-Aluminio-Bismuto. A esta temperatura ya ha tenido lugar la transformación eutéctica ternaria que da lugar a la precipitación del bismuto.

Figura 54. Isoterma a 240°C después de la transformación Eutéctica [188].
La isoterma a 240°C del diagrama ternario Zinc-Aluminio-Bismuto muestra la presencia de las fases $\text{Al}(\text{fcc-}\alpha)$, $\text{Zn}(\text{hcp-}\beta)$ y Bi(romb), denotadas en la figura 54 como α, β y Bi, respectivamente. La transformación eutéctica ternaria $L'' \leftrightarrow \text{Bi(rom)} + \text{Al}(\text{fcc-}\alpha) + \text{Zn}(\text{hcp-}\beta)$ hace que desaparezca todo el líquido y que precipite el bismuto.

A continuación, en la figura 55 se representa la evolución en la formación de las diferentes fases presentes en función de la temperatura en un hipotético proceso de enfriamiento para cada una de las aleaciones comprendidas en el grupo 20%Zn-80%Al + (10%, 20%, 30%, 40%, 50% y 60% de Bi), con el propósito de conocer las temperaturas y las variaciones en la composición de cada una de las fases presentes. Estas gráficas están obtenidas también mediante Thermo-Calc [188], y los datos que se obtengan de ellas servirán para poder compararlos con los que proponen Gröbner y Mirkovic [30, 31], recogidos en la figura 41.

Figura 55. Obtención mediante Thermo-Calc [188] de la evolución de la formación de las fases para la aleación 20%Zn-80%Al con contenidos crecientes de bismuto.
Si se comparan las gráficas de las figura 55 con la gráfica del material base mostrada en la figura 38, se observa que con la adición de bismuto a la aleación binaria Zinc-Aluminio aparecen dos líquidos, L' rico en zinc y aluminio y L'', rico en bismuto. En las gráficas de la figura 55 se observa que ambos líquidos siguen caminos de solidificación diferentes. La línea azul correspondiente al líquido L'', rico en bismuto, tiene una evolución con la temperatura independiente de la línea roja correspondiente al líquido L' rico en zinc y aluminio.

Con la adición de un 10%Bi, las composiciones de partida de estos líquidos son de $L'=0,86$ y la de $L''=0,14$. Estas composiciones van cambiando a medida que se va añadiendo bismuto, de tal forma que se va enriqueciendo L'' y empobreciendo L'. Con la adición de un 60%Bi a la aleación base, las composiciones iniciales de ambos líquidos pasan a ser $L'=0,38$ y $L''=0,62$.

Se parte de la temperatura de 700°C como se observa en las gráficas de la figura 55 y se observa cómo van variando las fases L', L'', $Al(fcc-\alpha')$, $Al(fcc-\alpha)$, $Zn(hcp-\beta)$ y $Bi(romb)$, conforme disminuye la temperatura. El primer cambio en las fases que se observa es la aparición de la fase $Al(fcc-\alpha)$, línea verde, que coincide con el comienzo de la solidificación de la aleación con formación de dicha fase. Esta solidificación tiene lugar 586°C en la aleación base 20%Zinc-80%Aluminio, y en las aleaciones con adición de bismuto, esta temperatura aumenta conforme aumenta el %bismuto añadido, es decir, que el aumento en el contenido de bismuto en la aleación base 20%Zinc-80%Aluminio, retarda la formación de la fase inicial $Al(fcc-\alpha)$.

A medida que la temperatura va disminuyendo, la composición de la fase $Al(fcc-\alpha)$ va aumentando progresivamente a costa del líquido L', hasta que llega un momento en el que todo el líquido L' desaparece, coincidiendo con el cruce por la línea de sólidos. En la aleación base 20%Zinc-80%Aluminio, la temperatura de la línea de líquidos es de 589°C y la del sólidos de 509°C, entre ambas temperaturas hay un intervalo de 80°C, durante el cual, la fase $Al(fcc-\alpha)$ precipita. En las aleaciones con adiciones de bismuto, conforme aumenta el contenido de bismuto este intervalo de temperatura se hace más pequeño, es decir que la región del diagrama de fases ocupado por $[líquido + Al(fcc-\alpha)]$ se estrecha y tiende a desaparecer.
En el intervalo de temperaturas (509°C-316°C) del sistema ternario Zn-Al-Bi, está descrita la transformación monotéctica $L' \leftrightarrow L'' + Al(fcc-\alpha') + Zn(hcp-\beta)$ a 376°C [30, 31], y para las aleaciones 20%Zn-80%Al con adiciones de bismuto mostradas en las gráficas de la figura 55 no sea observado aún dicha transformación debido a que la composición de estas aleaciones no es la que da lugar a la transformación monotéctica.

En el intervalo de temperaturas comprendidas entre los 600°C-290°C de las gráficas de la figura 55, la composición de la fase $Al(fcc-\alpha)$ va aumentando ligeramente y la composición del líquido L'' va disminuyendo.

En torno a los 290°C, comienza la precipitación de la fase $Al(fcc-\alpha')$, que va aumentando su composición a medida que desciende la temperatura hasta llegar a un máximo, que coincide con la transformación eutectoide ternaria. La fracción molar de la fase $Al(fcc-\alpha')$ que se forma en las aleaciones 20%Zinc-80%Aluminio con adiciones de bismuto es muy pequeña y no llega ni a 0,1. En cambio, en la aleación base de composición 20%Zinc-80%Aluminio, la fracción molar de la fase $Al(fcc-\alpha')$, llega a tener un máximo de de 0,13, es decir, que la adición de bismuto a la aleación 20%Zinc-80%Aluminio provoca que la precipitación de la fase $Al(fcc-\alpha')$ se produzca en menor medida.

A la temperatura de 277,63°C, tiene lugar la transformación eutectoide $Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta)$, mediante la cual, la fase $Al(fcc-\alpha')$ desaparece y aparece la fase $Zn(hcp-\beta)$. En la aleación base 20%Zinc-80%Aluminio, la transformación eutectoide binaria tiene lugar a los 277,23°C una temperatura casi idéntica a la de la transformación eutectoide ternaria y es porque realmente la ternaria deriva casi exclusivamente de la binaria, por eso las temperaturas son tan parecidas.

En la tabla 17, se muestra cómo varían las composiciones de las fases involucradas en la transformación eutectoide ternaria en función de la cantidad de bismuto añadida.
Resultados y Discusión

Tabla 17. Variación de la composición de las fases durante la transformación eutectoide ternaria.

<table>
<thead>
<tr>
<th>FRACCIONES MOLARES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleación</td>
</tr>
<tr>
<td>Base</td>
</tr>
<tr>
<td>+10%Bi</td>
</tr>
<tr>
<td>+20%Bi</td>
</tr>
<tr>
<td>+30%Bi</td>
</tr>
<tr>
<td>+40%Bi</td>
</tr>
<tr>
<td>+50%Bi</td>
</tr>
<tr>
<td>+60%Bi</td>
</tr>
</tbody>
</table>

En la tabla 17 la composición de la fase Al(fcc-α’), es justo la composición antes de que se produzca la transformación eutectoide y las composiciones de de las fases Al(fcc-α) y Zn(hcp-β) son las composiciones presentes justo después de haberse producido la transformación eutectoide. Aunque la fase líquida L” no participa en la transformación eutectoide, se ha incluido en la tabla 17 para comprobar que aumenta su composición a medida que también aumenta el contenido en bismuto. Esto se debe a que el bismuto se localiza en el líquido L”.

En la tabla 17 se observa que de la transformación eutectoide ternaria se obtiene la fase Al(fcc-α) de forma mayoritaria y la fase Zn(hcp-β) se obtiene de forma muy minoritaria, ya que su fracción molar no llega ni al 0,01. En la tabla 17 también se observa que conforme aumenta el contenido de bismuto, el líquido L” se va enriqueciendo y por eso también las composiciones de las fases Al(fcc-α’), Al(fcc-α) y Zn(hcp-β) disminuyen.

Tras la transformación eutectoide, y si se sigue disminuyendo la temperatura, en la aleación base 20%Zinc-80%Aluminio ya no se produce ninguna reacción y la fase Al(fcc-α) disminuye ligeramente su composición y la fase Zn(hcp-β) la aumenta hasta llegar a la temperatura de 100ºC que es la última temperatura que se muestra en la gráfica de la figura 38. En cambio, en las aleaciones con adiciones de bismuto aún se produce otra transformación, que es la eutéctica ternaria formada exclusivamente a partir del líquido L” (línea azul en las gráficas de la figura 55).

La composición del líquido L” varía desde una fracción molar de 0,1 para la aleación (20%Zn-80%Al + 10%Bi) hasta la fracción de 0,61 para la aleación (20%Zn-80%Al + 60%Bi). A partir de aquí, va disminuyendo su composición ligeramente hasta llegar a la temperatura eutéctica ternaria a la temperatura de 254,42ºC.
Mediante esta transformación, todo el líquido $L’’$ desaparece y se forman las fases $Bi(romb)$, $Zn(hcp-\beta)$ y $Al(fcc-\alpha)$ de acuerdo con la transformación $L’’ \leftrightarrow Bi(romb) + Zn(hcp-\beta) + Al(fcc-\alpha)$.

En la tabla 18, se muestra cómo varían las composiciones de las fases involucradas en la transformación eutéctica ternaria en función de la cantidad de bismuto añadida.

Tabla 18. Variación de la composición de las fases durante la transformación eutéctica ternaria.

<table>
<thead>
<tr>
<th>Aleación</th>
<th>$L’’$</th>
<th>$Al(fcc-\alpha)$</th>
<th>$Zn(hcp-\beta)$</th>
<th>$Bi(romb)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10%Bi</td>
<td>0,10</td>
<td>0,8138</td>
<td>0,094</td>
<td>0,091</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>0,1824</td>
<td>0,7455</td>
<td>0,8650</td>
<td>0,1678</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>0,2507</td>
<td>0,6888</td>
<td>0,080</td>
<td>0,2307</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>0,3105</td>
<td>0,6396</td>
<td>0,0746</td>
<td>0,2857</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>0,3211</td>
<td>0,6342</td>
<td>0,070</td>
<td>0,2955</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>0,4074</td>
<td>0,5596</td>
<td>0,065</td>
<td>0,3749</td>
</tr>
</tbody>
</table>

La composición de la fase líquida $L’’$ mostrada en la tabla 18 es justo la composición antes de que se produzca la transformación eutéctica ternaria. Y las composiciones de las fases $Bi(romb)$, $Zn(hcp-\beta)$ y $Al(fcc-\alpha)$ las de justo después.

Comparando los datos de la tabla 17 con los de la tabla 18 se observa que, la fase $L’’$ se transforma casi por completo en la del $Bi(romb)$ y de forma minoritaria en la del $Zn(hcp-\beta)$ y que la fase $Al(fcc-\alpha)$ apenas participa porque entre una reacción y otra, su composición se mantiene prácticamente igual.

5.3.1 20%Zn-80%Al + 10%Bi, caracterización microestructural.

Una vez simuladas termodinámicamente todas las aleaciones del grupo 20%Zinc-80%Aluminio con las adiciones de bismuto, se procedió a la adición experimental de diferentes cantidades de bismuto con el fin de observar los posibles cambios que se produzcan en la microestructura con respecto a la aleación base 20%Zinc-80%Aluminio.
La primera adición al material base que se realizó fue de un 10% de bismuto y al igual que se ha hecho con el material base, se comienza caracterizando la muestra mediante microscopía óptica. Los resultados obtenidos en su caracterización se muestran en las imágenes de la figura 56.

En las imágenes de la figura 56 se observa una zona mayoritaria de color claro y rodeándola, una zona de color oscuro, al igual que se observa en las imágenes de la figura 44 correspondientes a la aleación 20%Zn-80%Al. La única diferencia apreciable que se observa ahora en las imágenes de la figura 56 es la aparición de pequeñas partículas distribuidas de forma homogénea a lo largo de toda la matriz de fase Al(fcc-α) y rodeadas de la mezcla de las fases [Al(fcc-α) + Zn(hcp-β)], de color oscuro. Estas partículas se corresponden con el 10% de bismuto añadido, y se concentran preferentemente en los bordes de los granos de fase Al(fcc-α).

La microestructura observada en las imágenes de la figura 56, es similar a la que se observa en las aleaciones aluminio-cobre, donde los intermetalídicos presentes se localizan en los límites de grano correspondientes con las regiones interdendríticas [190, 191].

La imagen mostrada en la figura 57 corresponde con la caracterización microestructural mediante SEM de la aleación 20%Zn-80%Al + 10%Bismuto. En ella se observa una serie de partículas blancas distribuidas de forma homogénea y embebidas en la matriz de color amarillo.
Para identificar las partículas de color blanco observadas en la figura 57, se realiza un análisis puntual en una de ella. El punto rojo muestra el punto de análisis y los resultados obtenidos en dicho análisis se muestran en el espectro de la figura 58.

El espectro de la figura 58 muestra que las partículas de color blanco están compuestas mayoritariamente por la fase del bismuto, Bi(romb). De acuerdo con J. Gröbner y colaboradores [30, 31] estas partículas corresponden con el líquido solidificado denotado como L", mayoritario en bismuto y que sigue un camino de solidificación diferente al otro líquido L'. Este líquido L" queda atrapado en el líquido L' durante el proceso de solidificación de la aleación 20%Zn-80%Al + 10%Bismuto.

Los datos del análisis de la figura 58 están en concordancia con los resultados obtenidos mediante Thermo-Calc [188] de los sistemas binarios Zinc-Bismuto de la figura 42 y Aluminio-Bismuto de la figura 43, en los cuales se observa que el bismuto disuelve mayor cantidad de zinc que de aluminio.
En la figura 59, se muestra el mapping realizado a una muestra de la aleación 20%Zinc-80%Al + 10%Bismuto.

El mapping de la figura 59 realizado a una región de la muestra 20%Zn-80%Al + 10%Bi revela la distribución de los elementos zinc, aluminio y bismuto en ella. Como se ha comentado anteriormente, el bismuto se distribuye de forma uniforme a lo largo de toda la matriz.

A nivel de la microestructura no se observa ningún cambio más apreciable en la aleación 20%Zinc-80%Al + 10%Bismuto, si la comparamos con la aleación base sin la adición de bismuto.

Una vez caracterizada la microestructura mediante microscopía óptica, se pasa a la realización de los ensayos térmicos. En las gráficas de las figura 60 y 61, se presentan los resultados obtenidos en el programa de temperatura controlado. Las gráficas de la figura 60 corresponden con las curvas de calentamiento y las gráficas de la figura 61 con las de enfriamiento. En cada una de las figuras se representan conjuntamente los materiales base con las aleaciones con las adiciones de bismuto. Las curva de color rojo corresponde con la aleación base enfriada al aire, Base B, la curva de color verde con la aleación base enfriada en el interior del horno, Base A, la de color azul con la aleación base + 10%Bi enfriada en el interior del horno, Muestra A y la última curva, la de color negro, con la de un 10%Bi de adición pero al aire, Muestra B. Estos colores se van a repetir para todos las representaciones de los análisis térmicos diferenciales realizados a las diferentes muestras.
Resultados y Discusión

En la tablas 19 y 20 se resumen todos los datos de temperatura obtenidos por DTA en las curvas de la figura 60 y 61.

Tablas 19 y 20. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA de la aleación de composición 20%Zn-80%Al + 10%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura en la etapa de calentamiento (fig.60)</th>
<th>Datos de Temperatura en la etapa de enfriamiento (fig.61)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctico Ternario</td>
<td>Solidificación con formación de fase Al(fcc-α)</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td></td>
</tr>
<tr>
<td>Base A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252</td>
<td>255,68</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,43</td>
<td>254,78</td>
</tr>
</tbody>
</table>

Tanto en las curvas de calentamiento, como en las curvas de enfriamiento del ensayo térmico, no se aprecian diferencias importantes en cuanto a los valores de temperatura, siendo prácticamente iguales las que se obtienen en las muestras que se...
han enfriado en el interior del horno, muestra A, como de las que se obtienen en las muestras que han sido enfriadas al aire, muestra B, es decir, que el tratamiento térmico de enfriamiento que han sufrido las muestras no influye en los datos de temperatura obtenidos en el ensayo térmico.

En las curvas de color negro y azul de la figura 60, correspondientes a la etapa de calentamiento, se obtienen dos picos, uno y más pequeño correspondiente a la transformación eutéctica del ternario Zn-Al-Bi: \(L'' \leftrightarrow Bi(romb) + Zn(hcp-\beta) + Al(fcc-\alpha) \) y otro pico de mayor tamaño, que corresponde con la solidificación de la aleación 20%Zinc-80%Aluminio + 10%Bismuto por formación de fase \(Al(fcc-\alpha) \).

La ausencia de un pico entorno a los 376°C, concuerda con los datos obtenidos mediante Thermo-Calc [188], y que mostraban en la gráfica de la figura 55 que para una composición de 20%Zinc-80%Aluminio + 10%Bismuto no tiene lugar la reacción monotética ternaria, \(L' \leftrightarrow L'' + Al(fcc-\alpha') + Zn(hcp-\beta) \).

La transformación eutectoide ternaria que según la bibliografía [30, 31] tiene lugar a una temperatura de 278°C, no da ningún pico en el ensayo térmico en la etapa de calentamiento de la figura 60, concordando con los datos obtenidos mediante Thermo-Calc [188].

Como se ha visto en los ensayos térmicos de la aleación base 20%Zinc-80%Aluminio en las figuras 48 y 49, dicha composición se encuentra desplazada hacia la izquierda en el diagrama de fases Zn-Al, y al enfriarse la aleación desde su estado líquido hasta temperatura ambiente no corta la línea de la transformación eutectoide binaria. Este hecho también se repite para la aleación ternaria, cuya reacción eutectoide deriva casi exclusivamente de la reacción eutéctica binaria, y al no producirse ésta, la ternaria tampoco tiene lugar.

En cuanto a las curvas de enfriamiento representadas en la figura 61 sólo se detecta el pico correspondiente a la solidificación de la aleación 20%Zinc-80%Aluminio + 10%Bi por formación de fase \(Al(fcc-\alpha) \), el pico correspondiente con la transformación eutéctica ternaria que se ha observado en la etapa de calentamiento, en la de enfriamiento no se detecta.
5.3.2 20%Zn-80%Al + 20%Bi caracterización microestructural

En las imágenes de la figura 62 se muestran los resultados obtenidos en la caracterización microestructural de la aleación base 20%Zn-80%Al con la adición de un 20% de bismuto.

Figura 62. a) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 20%Zn-80%Al + 20%Bi enfría da al aire; b) Detalle de la microestructura obtenida mediante Microscopía óptica a 500 de la aleación 20%Zn-80%Al + 10%Bi enfría da al aire.

En las imágenes de la figura 62 se muestra el aspecto de la microestructura de la aleación base con la adición del 20% de bismuto. No se aprecian diferencias apreciables con respecto a la aleación anterior, que tenía un 10%Bi, el bismuto en forma del líquido

L'' solidificado se sigue localizando en los bordes de grano de la fase $Al(fcc-\alpha)$. Los resultados de los ensayos térmicos se muestran en las figuras 63 y 64.
Los datos de temperatura que se observan en las curvas de las figuras 63 y 62 se recogen en las tablas 21 y 22.

Tabla 21 y 22. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA de la aleación de composición 20%Zn-80%Al + 20%Bi.

Tabla 21. Datos de Temperatura en la etapa de calentamiento (fig.63) Aleación Base 20%Zn-80%Al + 20%Bi

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura en la etapa de calentamiento (fig.63)</th>
<th>Eutéctico Ternario</th>
<th>Inicio y final de la fusión de la aleación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inicio (°C)</td>
<td>Pico MÁXIMO (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td></td>
<td>251,77</td>
<td>255,06</td>
</tr>
<tr>
<td>Muestra B</td>
<td></td>
<td>251,67</td>
<td>254,91</td>
</tr>
</tbody>
</table>

Tabla 22. Datos de Temperatura en la etapa de enfriamiento (fig.64) Aleación Base 20%Zn-80%Al + 20%Bi

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura en la etapa de enfriamiento (fig.64)</th>
<th>Eutéctico Ternario</th>
<th>Solidificación con formación de fase Al(fcc-α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inicio (°C)</td>
<td>Pico MÁXIMO (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td></td>
<td>234,10</td>
<td>231,88</td>
</tr>
<tr>
<td>Muestra B</td>
<td></td>
<td>231,16</td>
<td>228,62</td>
</tr>
</tbody>
</table>

Observando los resultados obtenidos en la etapa de calentamiento para las aleaciones base, figura 63 y tabla 21, se detecta una pequeña diferencia de 2°C entre la muestra enfriada en el interior del horno y la enfriada al aire, y claro está la ausencia de señal térmica correspondiente a la transformación eutéctica ternaria, ya que el material base no tiene bismuto. En cuanto a las muestras con un 20% de Bi, las temperaturas de la reacción eutéctica ternaria son prácticamente idénticas y las correspondientes al inicio y final de la fusión de la aleación, difieren unos siete grados.

En los resultados de la etapa de enfriamiento, figura 64 y tabla 22, no se aprecian grandes diferencias excepto en la temperatura del final de la solidificación de la aleación, existiendo una discrepancia de hasta 15°C. En este caso, y a diferencia de los datos de temperatura que se obtenían para las muestras 20%Zn-80%Al + 10%Bi, en la etapa de enfriamiento si se aprecia el pico correspondiente a la reacción eutéctica ternaria, aunque ésta es muy débil, como se puede apreciar en el tamaño del pico de las curvas azul y negra de la figura 64. En cuanto a la temperatura del eutéctico ternario se adelanta unos 20°C, 234,10°C, con respecto a la etapa de calentamiento, 251,77°C.
5.3.3 20%Zn-80%Al + 30%Bi caracterización microestructural

Continuando con las adiciones de bismuto, seguidamente se muestran los resultados de la caracterización de la adición de un 30% de bismuto.

Las imágenes de la figura 65 muestran el aspecto superficial de la muestra con la adición de un 30% de bismuto. La microestructura es semejante a la de las aleaciones anteriores con adiciones de 10% y 20% de bismuto.

Figura 65. a) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 20%Zn-80%Al + 30%Bi enfriada al aire; b) Detalle de la microestructura obtenida mediante Microscopía óptica a 500 de la aleación 20%Zn-80%Al + 30%Bi enfriada al aire.

Las figuras 66 y 67, resumen los ensayos térmicos realizados tanto en la etapa de calentamiento como en la de enfriamiento.

Figura 66. Análisis térmico diferencial de la etapa de calentamiento de la aleación 20%Zn-80%Al + 30%Bi.

Figura 67. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 20%Zn-80%Al + 30%Bi.

Las tablas 23 y 24 recogen todas las señales térmicas aparecidas en las figuras 66 y 67.
Con la adición del 30% de bismuto en la aleación base, la tendencia de los resultados se mantiene, es decir no se producen variaciones significativas en los datos de temperatura con respecto a las adiciones anteriores del 10%, 20% y 30% de Bi.

5.3.4 20%Zn-80%Al + 40%Bi caracterización microestructural

Las imágenes de la figura 68 corresponden con la caracterización mediante microscopía óptica de la aleación 20%Zn-80%Al con la adición de un 40%.

Figura 68. a) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 20%Zn-80%Al + 40%Bi enfriada al aire; b) Detalle de la microestructura obtenida mediante Microscopía óptica a 500 de la aleación 20%Zn-80%Al + 40%Bi enfriada al aire.
En las imágenes de la figura 68 se sigue observando la localización preferencial del bismuto en los huecos interdendríticos de la fase Al(fcc-α), al igual que se observaba en las aleaciones anteriores.

En las figuras 69 y 70, se muestran las curvas térmicas en la etapa de calentamiento y en la de enfriamiento para las aleaciones 20%Zn-80%Al + 40%Bi.

En las tablas 25 y 26 se recogen las temperaturas obtenidas de las figuras 69 y 70.

Figura 69. Análisis térmico diferencial de la etapa de calentamiento de la aleación 20%Zn-80%Al + 40%Bi.

Figura 70. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 20%Zn-80%Al + 40%Bi.

Tablas 25 y 26. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA de la aleación de composición 20%Zn-80%Al + 40%Bi.
Las temperaturas correspondientes a la aleación 20%Zn-80%Al + 40%Bi y que están representadas en las figuras 69 y 70 y el resumen detallado de las mismas reflejado en las tablas 25 y 26, no revelan cambios significativos a destacar que los ya comentados para las aleaciones anteriores.

5.3.5 **20%Zn-80%Al + 50%Bi caracterización microestructural**

En las imágenes de la figura 71, se muestra el aspecto superficial de la aleación 20%Zn-80%Al + 50%Bi.

![Image](image.png)

Figura 71. a) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 20%Zn-80%Al + 50%Bi enfriada al aire; b) Detalle de la microestructura obtenida mediante Microscopía óptica a 500 de la aleación 20%Zn-80%Al + 50%Bi enfriada al aire.

El aspecto de la aleación base con la adición de un 50% de bismuto no varía con respecto al de las aleaciones anteriores. Los datos de temperatura obtenidos en el programa de de temperatura controlado, se muestran en las figuras 72 y 73.

![Image](image.png)

Figura 72. Análisis térmico diferencial de la etapa de calentamiento de la aleación 20%Zn-80%Al + 50%Bi.

![Image](image.png)

Figura 73. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 20%Zn-80%Al + 50%Bi.
Resultados y Discusión

Tanto para las muestras A y B en la etapa de calentamiento y en la de enfriamiento se observan dos picos, el más grande que corresponde con el inicio y final de la fusión de la aleación, y el pequeño que corresponde con la transformación del eutéctico ternario. Los picos son los mismos que los obtenidos para las aleaciones anteriores con adición de bismuto. En las tablas 27 y 28 se resumen todos los datos de temperatura de las curvas de las figuras 72 y 73.

Tablas 27 y 28. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA de la aleación de composición 20%Zn-80%Al + 50%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura en la etapa de calentamiento (fig.72)</th>
<th>Eutéctico Ternario</th>
<th>Inicio y final de la fusión de la aleación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td></td>
<td>251,91</td>
<td>255,57</td>
</tr>
<tr>
<td>Muestra B</td>
<td></td>
<td>251,74</td>
<td>255,34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura en la etapa de enfriamiento (fig.73)</th>
<th>Eutéctico Ternario</th>
<th>Solidificación con formación de fase Al(fcc-α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td></td>
<td>231,38</td>
<td>228,36</td>
</tr>
<tr>
<td>Muestra B</td>
<td></td>
<td>229,91</td>
<td>227,00</td>
</tr>
</tbody>
</table>

Observando los datos obtenidos en las tablas 27 y 28, la única diferencia notable a destacar es la diferencia en 30ºC en la temperatura eutéctica ternaria entre la etapa de calentamiento y la etapa de enfriamiento. En cuanto a la temperatura de inicio de fusión de la aleación es prácticamente igual para el caso de las aleaciones base, tanto en la etapa de calentamiento como en la de enfriamiento, mientras que para las aleaciones con la adición de un 50%Bi, se produce una diferencia de unos 7ºC.

5.3.6 20%Zn-80%Al + 60%Bi caracterización microestructural

La última adición de bismuto realizada a la aleación 20%Zinc-80%Aluminio es de un 60%. Las imágenes obtenidas mediante microscopía óptica, se muestran en la figura 74.
La adición a la aleación de composición 20%Zn-80%Al + 60%Bi hace que se aprecie mayor cantidad del mismo en las imágenes del microscopio óptico. El bismuto se sigue localizando preferencialmente en las zonas interdendríticas y adherido a la fase de color más oscuro, compuesta por las fases Al(fcc-α) y Zn(hcp-β). En las figuras 75 y 76 y en las tablas 29 y 30 se resumen todos los datos obtenidos en el programa de temperatura controlado.

Figura 74. a) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 20%Zn-80%Al + 60%Bi enfriada al aire; b) Detalle de la microestructura obtenida mediante Microscopía óptica a 500 de la aleación 20%Zn-80%Al + 60%Bi enfriada al aire.

La adición a la aleación de composición 20%Zn-80%Al + 60%Bi enfriada al aire hace que se aprecie mayor cantidad del mismo en las imágenes del microscopio óptico. El bismuto se sigue localizando preferencialmente en las zonas interdendríticas y adherido a la fase de color más oscuro, compuesta por las fases Al(fcc-α) y Zn(hcp-β). En las figuras 75 y 76 y en las tablas 29 y 30 se resumen todos los datos obtenidos en el programa de temperatura controlado.

Figura 75. Análisis térmico diferencial de la etapa de calentamiento de la aleación 20%Zn-80%Al + 60%Bi.

Figura 76. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 20%Zn-80%Al + 60%Bi.
Resultados y Discusión

Tabla 29 y 30. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA de la aleación de composición 20%Zn-80%Al + 60%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura en la etapa de calentamiento (fig.75)</th>
<th>Datos de Temperatura en la etapa de enfriamiento (fig.76)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctico Ternario</td>
<td>Eutéctico Ternario</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C) Pico Máximo (°C)</td>
<td>Inicio (°C) Pico Máximo (°C)</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C) T,intg (°C) Pico Máximo (°C)</td>
<td>Inicio (°C) T,intg (°C) Pico Máximo (°C)</td>
</tr>
<tr>
<td></td>
<td>Fin (°C)</td>
<td>Fin (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>- 570.60-597.51</td>
<td>- 638.82-633.54</td>
</tr>
<tr>
<td>Base B</td>
<td>- 571.61-599.42</td>
<td>- 640.84-629.19</td>
</tr>
<tr>
<td>Muestra A</td>
<td>249.38 - 253.67</td>
<td>632.88-629.65</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251.82 - 255.35</td>
<td>630.61-640.84</td>
</tr>
</tbody>
</table>

Los resultados obtenidos en el ensayo térmico diferencial para al aleaciones 20%Zn-80%Al + 60%Bi, son similares a los obtenidos para las aleaciones anteriores con menores contenidos de bismuto.

Un hecho a destacar y que se ha repetido en todas las aleaciones 20%Zn-80%Al + adiciones de Bismuto, es la diferencia que existe en el valor de las temperaturas de inicio y final de la fusión de la aleación en la etapa de calentamiento, con las temperaturas de inicio y final de la solidificación de la aleación con formación de fase \(\text{Al(fcc-}\alpha) \) de la etapa de enfriamiento. La temperatura de inicio de la fusión de la aleación debería coincidir con la temperatura final de la solidificación, al igual que la temperatura final de fusión debería coincidir con la del inicio de la solidificación. En las aleaciones base, los datos de temperatura de inicio de la solidificación y final de fusión son prácticamente coincidentes para ambas muestras, 637,81°C-638,82°C para la base A y 639,83°C-640,84°C para la base B. En cambio las temperaturas de inicio de la fusión con la temperatura de final de solidificación ya existen diferencias apreciables, 571,61°C-560,49°C para la base A y 572,32°C-544,32°C para la base B.
Para las aleaciones con adición de bismuto, este hecho es más acusado y la diferencia entre las temperaturas es mayor, sobre todo entre las de inicio de la fusión con las del final de la solidificación. Para las temperaturas de la reacción eutéctica ternaria, también se observan diferencias de casi 20ºC en la temperatura de inicio y final de la misma entre una etapa y otra.

Este hecho es debido a la pérdida de peso que sufren las muestras en la etapa de calentamiento. En la gráfica de la figura 77 se representan las curvas termogravimétricas para las aleaciones 20%Zn-80%Al bases y con la adición de un 60%Bi.

![Gráfica comparativa de los Análisis termogravimétricos](image)

Figura 77. Gráfica comparativa de los Análisis termogravimétricos para las aleaciones 20%Zn-80%Al bases y las aleaciones con la adición de un 60%Bi.

Como se observa en las curvas de la figura 77, llegada la temperatura de 600ºC en la etapa de calentamiento, todas las curvas termogravimétricas comienzan a descender, es decir, comienzan a perder masa las muestras.
Las muestras base pierden más masa que las muestras con bismuto, por tanto, la aleación ternaria Zn-Al-Bi es más estable térmicamente que la aleación binaria Zn-Al.

La pérdida de peso sufrida por las muestras en la etapa de calentamiento implica que la composición de la muestra en la etapa de enfriamiento sea diferente a la composición de partida, por esta razón los datos de temperatura en las etapas de calentamiento y enfriamiento no son coincidentes. El hecho de realizar los ensayos térmicos hasta 700ºC es porque la curva del líquidos se encuentra en torno a esa temperatura y es necesario alcanzar esa temperatura para poder observar el pico correspondiente a la fusión de la aleación correspondiente.

En la figura 78 se muestra un esquema-resumen, de las imágenes obtenidas mediante microscopía óptica para todas las aleaciones estudiadas en este apartado, con el objetivo de tener una visión global de todas ellas y poder comparar las diferentes microestructuras de una forma más sencilla.

![Microestructuras obtenidas mediante microscopía óptica para diferentes aleaciones](image)

Figura 78. Microestructuras obtenidas mediante microscopía óptica a 200 aumentos para las aleaciones a)20%Zn-80%Al + 10%Bi, b)20%Zn-80%Al + 20%Bi, c)20%Zn-80%Al + 30%Bi; d)20%Zn-80%Al + 40%Bi; e)20%Zn-80%Al + 50%Bi; f)20%Zn-80%Al + 60%Bi; g)20%Zn-80%Al + 60%Bi.

Las imágenes a)-f) de la figura 78 corresponden a las aleaciones marcadas con la línea discontinua de color morado situada en el diagrama ternario central de la figura 78.
Comparando las microestructuras de las imágenes a)-f) de la figura 78, no se observan grandes diferencias entre unas aleaciones y otras. En todas ellas se observa una zona mayoritaria de color clara constituida por la fase $Al(fcc-\alpha)$ y rodeándola, unas zonas más oscuras constituidas por las fases $Al(fcc-\alpha)$ y $Zn(hcp-\beta)$. El bismuto añadido se distribuye de forma homogénea por toda la muestra y se localiza preferentemente en las zonas oscuras comentadas anteriormente. Para este grupo de aleaciones de composición 20%Zn-80%Al + adiciones de bismuto, no se ha observado al microscopio óptico la microestructura característica que se forma tras la reacción eutectoide ternaria.

Con respecto a los ensayos térmicos diferenciales y a modo de resumen, y con el propósito de comparar los resultados obtenidos para todas las aleaciones estudiadas en este apartado, en las gráficas de las figuras 79 y 80 se representan las curvas térmicas diferenciales para las aleaciones base 20%Zn-80%Al, y para las aleaciones 20%Zn-80%Al con adiciones de bismuto en la etapa de calentamiento.

Las curvas térmicas de la figura 80, correspondientes a la etapa de calentamiento de las diferentes aleaciones son muy similares entre sí, no se aprecian diferencias destacables en cuanto a la temperatura y en todas ellas se ha observado un pico de mayor tamaño a 570ºC, que corresponde con la fusión de la aleación y un pico mucho más pequeño a 252ºC, que aparece en todas las curvas con adición de bismuto y que
corresponde con la transformación eutéctica del ternario Zn-Al-Bi: \(L'' \leftrightarrow Bi(romb) + Zn(hcp-\beta) + Al(fcc-\alpha) \).

El que no se haya observado al microscopio la microestructura eutéctica ternaria característica [30], la cual se obtiene partir del líquido rico en bismuto \(L'' \), es debido a que este líquido al ser el último en solidificar, se ha quedado atrapado entre los huecos interdendríticos de la fase inicial \(Al(fcc-\alpha) \). En estos huecos como se ha visto a lo largo de todas las caracterizaciones microestructurales son zonas muy oscuras ocupadas conjuntamente por la mezcla de las fases \(Al(fcc-\alpha) \) y \(Zn(hcp-\beta) \) y por la fase líquida \(L'' \), última en solidificar y es difícil distinguir en ella la microestructura característica de la reacción eutéctica ternaria.

En cuanto a las temperaturas correspondientes al inicio y final de la solidificación de la aleación obtenidas experimentalmente mediante el ensayo térmico, se mantienen prácticamente constantes para todas las aleaciones estudiadas, la fase \(Al(fcc-\alpha) \) comienza a precipitar a los 630°C y lo sigue haciendo a costa del líquido \(L' \) hasta los 545°C. Los resultados obtenidos en cambio mediante la simulación termodinámica [188] mostrados en las gráficas de la figura 55, reflejan una disminución progresiva de estas temperaturas conforme aumenta el contenido de bismuto añadido, es decir, que el intervalo de temperaturas en el que la aleación está solidificando cada vez es más pequeño.

En cuanto a la transformación eutéctica ternaria, la simulación termodinámica [188] la establece a 256°C, y experimentalmente se obtiene a 251°C, hay por tanto una discrepancia de 5 grados. Y la transformación eutectoide ternaria, que la simulación termodinámica la sitúa en torno a los 277,63°C, experimentalmente no se ha observado ningún pico en el análisis térmico que demuestre que dicha transformación se esté produciendo.

A continuación, se va a evaluar el calor absorbido por las muestras en el proceso de fusión y en la transformación eutéctica ternaria. En las gráficas de las figuras 81, 82 y 83 se representa el flujo de calor absorbido por el sistema en función de la temperatura para la etapa de calentamiento y para las muestras que han sido enfríadas al aire.
Resultados y Discusión

En las curvas de la figura 81, correspondientes al análisis calorimétrico de la aleación 20%Zn-80%Al sin la adición de bismuto, sólo se ha observado un pico, que es el correspondiente a la inicio y final de la fusión de la aleación, y en las curvas de las figuras 82 y 83 se ha observado además de este pico, el correspondiente a la transformación eutéctica ternaria. Los datos del los calores absorbidos se obtienen mediante la integración de dichos picos, y los valores obtenidos se recogen en la tabla 31.
Si nos fijamos en los datos recogidos en la tabla 31 se observa que, el flujo de calor no sigue una tendencia, pero se puede concluir que a adiciones menores de bismuto, 10%, 20% y 30% el calor absorbido por el sistema es mayor que para adiciones superiores de bismuto 40%, 50% y 60%. En cuanto al calor absorbido en la transformación eutéctica se puede concluir de igual forma, dicho calor es mayor para las adiciones de un 20% y un 30% que para las aleaciones con adiciones de un 40%, 50% y 60% de Bi.

Tabla 31. Resumen de los calores absorbidos en la etapa de calentamiento por las muestras 20%Zn-80%Al y 20%Zn-80%Al + adiciones de Bismuto.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos del calor absorbido en la etapa de calentamiento (fig.81, 82 y 83)</th>
<th>20%Zn-80%Al + Adiciones de Bismuto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fusión</td>
<td>Eutéctico Ternario</td>
</tr>
<tr>
<td></td>
<td>Calor Absorbido(J/g)</td>
<td>Calor Absorbido(J/g)</td>
</tr>
<tr>
<td>Base A</td>
<td>144,3</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>122,0</td>
<td>-</td>
</tr>
<tr>
<td>+10%Bi</td>
<td>136,3</td>
<td>1,5</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>135,4</td>
<td>2,235</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>139,9</td>
<td>2,450</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>113,1</td>
<td>1,678</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>127,2</td>
<td>1,425</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>125,9</td>
<td>1,603</td>
</tr>
</tbody>
</table>
5.4 Simulación termodinámica de la aleación base 40%Zn-60%Al

La discusión de resultados continúa por la aleación de composición 40% de zinc y 60% de aluminio. En la figura 84 se representa el diagrama binario del sistema Zinc-Aluminio obtenido mediante Thermo-Calc [188].

La línea roja discontinua situada sobre el diagrama zinc-aluminio, marca la composición de la aleación que va a ser estudiada en este apartado. Sobre ella, se sitian los números del 1-6, marcando los puntos donde se produce un cambio significativo en la composición de la aleación. Las fases que corta la línea roja son líquido, [líquido + Al\(\text{fcc-}\alpha\)], Al\(\text{fcc-}\alpha\), [Al\(\text{fcc-}\alpha\)+ Al\(\text{fcc-}\alpha’\)] y [Al\(\text{fcc-}\alpha\)+ Zn\(\text{hcp-}\beta\)]. En la gráfica de la figura 85 se representa la variación de la composición de las fases anteriormente citadas con la temperatura. Esta gráfica se obtiene también mediante Thermo-Calc [188] y sobre ella, se señalan los números que se han colocado junto a línea roja discontinua que marca la composición en la figura 84.
La temperatura y composición de las fases en esos puntos se detallan en la tabla 32.

Tabla 32. Resumen de los cambios principales que tienen lugar en la aleación base 40%Zn-60%Al

<table>
<thead>
<tr>
<th>Punto Interés</th>
<th>T(°C)</th>
<th>Líquido</th>
<th>$\text{Al}(\text{fcc-}\alpha)$</th>
<th>$\text{Al}(\text{fcc-}\alpha')$</th>
<th>$\text{Zn}(\text{hcp-}\beta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>537</td>
<td>0,97</td>
<td>0</td>
<td>0,031</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>445</td>
<td>2,02E-14</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>347,2</td>
<td>0</td>
<td>0,11</td>
<td>0,88</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>277,2</td>
<td>0</td>
<td>0,70</td>
<td>0</td>
<td>0,31</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>0</td>
<td>0,61</td>
<td>0</td>
<td>0,39</td>
</tr>
</tbody>
</table>

Siguiendo la numeración de la figura 84, en el punto 1 a 700°C la aleación 40%Zn-60%Al está en estado líquido. Conforme disminuye la temperatura y llegamos al punto 2 a 537°C, comienza a solidificar la aleación por formación de la fase $\text{Al}(\text{fcc-}\alpha')$. A diferencia de la aleación anteriormente estudiada de composición 20%Zn-80%Al, el programa de simulación Thermo-Calc [188] indica que la fase que inicialmente precipita es la de aluminio pero en su forma distorsionada, es decir la denotada con la prima y que posee altos contenidos de zinc en su estructura. A medida que la temperatura disminuye, la composición de la fase líquida disminuye mientras que la fase $\text{Al}(\text{fcc-}\alpha')$ aumenta, hasta llegar al punto 3 a la temperatura de 445°C, donde todo el líquido ha solidificado por formación de la fase $\text{Al}(\text{fcc-}\alpha')$.

Figura 85. Variación de las fases presentes en el sistema 40%Zn-60%Al con la temperatura [188].
Entre las temperaturas comprendidas entre los puntos 3 y 4, no se produce ningún cambio en la composición, y solo está presente la fase \(\text{Al}(\text{fcc-}\alpha') \). Llegado el punto 4 a la temperatura de 347,2ºC la composición de la fase \(\text{Al}(\text{fcc-}\alpha') \) empieza a disminuir y aparece la fase \(\text{Al}(\text{fcc-}\alpha) \) hasta llegar al punto 5, donde tiene lugar la transformación eutectoide binaria a la temperatura de 277ºC: \(\text{Al}(\text{fcc-}\alpha') \leftrightarrow \text{Al}(\text{fcc-}\alpha) + \text{Zn}(\text{hcp-}\beta) \), mediante la cual la fase \(\text{Al}(\text{fcc-}\alpha') \) se transforma en las fases \(\text{Al}(\text{fcc-}\alpha) \) y \(\text{Zn}(\text{hcp-}\beta) \). Si la temperatura desciende aun más y se llega a los 100ºC marcado con el punto 6 ya no se produce ningún cambio más en las fases. Todos los cambios que se acaban de describir deberían aparecer como cambios en las temperaturas en los ensayos térmicos diferenciales.

5.5 Aleaciones 40%Zinc-60%Aluminio. Caracterización del Material Base.

Una vez obtenidos los datos de la simulación termodinámica, se procede al estudio de la microestructura de la aleación de composición 40%Zinc-60%Aluminio. Las imágenes obtenidas mediante microscopía óptica de la microestructura de la aleación 40%Zinc-60%Aluminio se muestran en la figura 86.

Figura 86. a) Microestructura obtenida mediante Microscopía óptica a 100 aumentos de la aleación base 40%Zn-60%Al enfriada al aire; b) Detalle de la microestructura obtenida mediante Microscopía óptica a 500 de la aleación base 40%Zn-60%Al enfriada al aire.

En las imágenes de la figura 86 se observa una microestructura formada por dendritas de fase \(\text{Al}(\text{fcc-}\alpha') \) de color claro y rodeándolas unas zonas más oscuras compuestas por la mezcla de las fases \(\text{Al}(\text{fcc-}\alpha) \) y \(\text{Zn}(\text{hcp-}\beta) \).
Comparando esta microestructura con la que se ha obtenido en la aleación anterior de composición 20%Zinc-80%Aluminio, se observa que las dendritas de la aleación 40%Zn-60%Al, son más pequeñas y están presentes en mayor medida y los huecos interdendríticos aparecen más definidos.

En la imagen obtenida mediante SEM de la figura 87 muestra el aspecto que presenta la microestructura de la aleación base 40%Zn-60%Al.

Figura 87. Microestructura obtenida mediante Microscopía Electrónica de Barrido de la muestra B de aleación base 40%Zn-60%Al.

En la imagen de la figura 87 se observa una gran dendrita de color oscuro que ocupa el centro de la imagen y rodeándola unas zonas claras, correspondientes a la mezcla de las fases $\text{Al(fcc-}\alpha)$ y $\text{Zn(hcp-}\beta)$. Los puntos de color rojo y negro, indican dos análisis puntuales realizados en dichas zonas. El punto rojo corresponde con el análisis realizado en la fase minoritaria de color clara y el análisis marcado con un punto negro, se corresponde con el análisis realizado en la fase mayoritaria observada en la imagen de la figura 87. Los resultados de ambos análisis se muestran en la tabla 33.

Tabla 33. Microanálisis semi-cuantitativo por EDX (Energy-dispersive X-ray) para la aleación 40%Zn-60%Al en los puntos rojo y negro de la imagen de la figura 86.

<table>
<thead>
<tr>
<th>Punto de análisis</th>
<th>Elementos</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peso %</td>
<td>Atómico%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negro</td>
<td>26,49</td>
<td>12,95</td>
<td>73,51</td>
<td>87,05</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Rojo</td>
<td>23,50</td>
<td>11,25</td>
<td>76,50</td>
<td>88,75</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Los resultados obtenidos en los análisis puntuales mostrados en la tabla 33 revelan composiciones muy parecidas para el zinc tanto en la dendrita como la zona interdendrítica y para el caso del aluminio igual. La composición de la aleación en estudio es 40%Zn-60%Al, por tanto se debería haber obtenido en los análisis una composición cercana al 60% para el aluminio y una composición cercana al 40% para el zinc. Los resultados experimentales difieren por tanto de las composiciones iniciales.

Siguiendo con la caracterización de la aleación base 40%Zn-60%Al, se somete a las muestras al ensayo de temperatura controlado. Los resultados se muestran en las gráficas de las figuras 88 y 89.

Figura 88. Análisis térmico diferencial de la etapa de calentamiento de la aleación base 40%Zn-60%Al.

Figura 89. Análisis térmico diferencial de la etapa de enfriamiento de la aleación base 40%Zn-60%Al.

Las curvas de la figura 88 corresponden con la etapa de calentamiento y las de la figura 89 con la de enfriamiento. En la etapa de calentamiento se observan dos picos, el más pequeño corresponde con la reacción eutectoide, que según la bibliografía [161] esta tiene lugar en torno a los 277° C, y el más grande corresponde con el inicio y final de la fusión de la muestra.

Con respecto a la transición de las fases [$Al(fcc-\alpha) + Al(fcc-\alpha')$] a la fase $Al(fcc-\alpha)$ en la etapa de calentamiento, no se ha observado ningún pico asociado, y esto es debido a que el calor asociado a esta transición es tan pequeña, que el equipo no la detecta.
Resultados y Discusión

Al igual que para la aleación anteriormente estudiada de composición 20%Zinc-80%Aluminio, la curva de color rojo corresponde con la muestra que ha sido enfriada al aire, y se denota como muestra B, y la curva de color verde con la muestra que ha sido enfriada en el interior del horno y que se llama muestra A.

Las curvas correspondientes a la etapa de enfriamiento del ensayo térmico de las muestras de la figura 89, reflejan únicamente un pico que es el correspondiente al principio y final de la solidificación de a la aleación por formación de fase $\text{Al}(fcc-\alpha')$, el pico pequeño que se observa en la etapa de calentamiento, en la etapa de enfriamiento no se observa, es decir, que la transformación eutectoide binaria $\text{Al}(fcc-\alpha') \leftrightarrow \text{Al}(fcc-\alpha) + \text{Zn}(hcp-\beta)$, no se detecta.

En la tabla 34 se resumen todos los datos de temperaturas asociados a los picos aparecidos tanto en la etapa de calentamiento como en la de enfriamiento. Con la letra mayúscula U se denotan las temperaturas asociadas con el pico de la reacción eutectoide, con las letras $[L + \text{Al}(fcc-\alpha)]$ las temperaturas asociadas al inicio y final de la fusión de la aleación.

Tabla 34. Resumen de los datos de temperatura obtenidos en el ensayo térmico diferencial, DTA, para la aleación base 40%Zn-60%Al, con una rampa de calentamiento de 5°C/min.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura</th>
<th>Datos de Temperatura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Etapa de Calentamiento (Fig.88)</td>
<td>Etapa de Enfriamiento (Fig.89)</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>T.intg (°C)</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>278,27</td>
</tr>
<tr>
<td></td>
<td>499,34</td>
<td>543,63</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>276,44</td>
</tr>
<tr>
<td></td>
<td>498,84</td>
<td>552,05</td>
</tr>
</tbody>
</table>

Si se comparan los datos de temperatura de la etapa de calentamiento de la muestra A con los de la muestra B, no se observan diferencias apreciables tanto en la transformación eutectoide como en las temperaturas correspondientes al inicio y final de la fusión de la muestra, $[\text{Al}(fcc-\alpha) + L]$. En la etapa de enfriamiento, en cambio se observa una diferencia de unos 10°C entre la muestra A y la muestra B, y la temperatura final de fusión en la etapa de calentamiento debería coincidir con la temperatura de inicio de la solidificación y en cambio, existe entre ambas una diferencia de 20°C. Además el equipo no detecta la reacción eutectoide binaria.
Comparando los resultados obtenidos mediante simulación termodinámica [188] con los obtenidos experimentalmente mediante el ensayo térmico, se observa que la temperatura correspondiente a la transformación eutectoide es prácticamente igual la que predice la simulación, 277,2ºC, con las que se obtienen experimentalmente en el ensayo térmico, 278,27ºC para la muestra A y 276,44ºC para la muestra B. Con respecto al inicio y final de la fusión de la aleación, [Al(fcc-α) + L], sí que existen diferencias, la simulación termodinámica predice que este proceso tiene lugar en el rango de temperaturas de 537ºC-445ºC y el ensayo térmico entre 499ºC-612ºC, esta diferencia es posible que se deba a las condiciones de calentamiento y enfriamiento que distan del equilibrio termodinámico de la simulación.

En la figura 90 se representan en conjunto los datos obtenidos experimentalmente en los ensayos térmicos, los obtenidos mediante simulación termodinámica, y los de Gröbner y Murray de la bibliografía.

![Figura 90. Diagrama de fases del sistema Zinc-Aluminio, obtenido mediante simulación termodinámica con el software Thermo-Calc [188].](image)

Como se observa en la figura 90, los datos de Murray [161] y los obtenidos en el presente trabajo se desmarcan de los datos obtenidos mediante simulación termodinámica con Thermo-Calc [188], que son prácticamente iguales a los de Gröbner [30].
El dato de la temperatura de la reacción eutectoide binaria en cambio, sí que es prácticamente igual para los cuatro trabajos reflejados en la figura 91. Por tanto, las mayores discrepancias se obtienen en la zona de inicio y final de la fusión de la aleación.

Con el fin de valorar el efecto del tipo de enfriamiento que sufren las muestras, lento en interior del horno (muestra A) y rápido al aire (muestra B) en las curvas térmicas obtenidas en los ensayos térmicos diferenciales, en la figura 91 se representan en conjunto las curvas termogravimétricas para dichas muestras.

En las curvas termogravimétricas de la figura 91 se observa que a partir de una temperatura de 500°C, tanto la muestra A como la muestra B comienzan a perder peso y llegada la temperatura de 700°C, la muestra A ha perdido un 24,83% y la muestra B un 22,67% del peso. Por tanto, cuando comienza la etapa de enfriamiento, la composición de las muestras es diferente de la composición de inicio y por tanto, esta es la causa por la que las temperaturas observadas en la etapa de enfriamiento para ambas muestras, son tan diferentes de las temperaturas de la etapa de calentamiento.
5.6 Simulación termodinámica de la aleación 40%Zn-60%Al + Adiciones de Bi

Una vez realizada la simulación termodinámica con Thermo-Calc [188], la caracterización microestructural y el estudio térmico para la aleación base de composición 40%Zn-60%Al, se realizan las simulaciones termodinámicas a las aleaciones con la adición de bismuto a dicha aleación base. El diagrama ternario de la figura 92 obtenido mediante Thermo-Calc [188], muestra las fases presentes en el sistema Zinc-Bismuto-Aluminio a una temperatura ligeramente superior a la transformación monotéctica, que de acuerdo a la bibliografía [30, 31], esta transformación tiene lugar a una temperatura de 376°C. En este apartado se discutirán los resultados obtenidos en la simulación termodinámica para las aleaciones 40%Zn-60%Al + adiciones de bismuto. Las composiciones de cada componente se resumen en la tabla situada a la izquierda del diagrama ternario.

Como se observa en el diagrama ternario Zinc-Aluminio-Bismuto de la figura 92, las composiciones de las aleaciones 40%Zn-60%Al + adiciones de bismuto y que se encuentran marcadas con una línea discontinua morada, se sitúan en la zona del diagrama donde coexisten las fases líquida L'', rica en bismuto y la fase $Al(fcc-\alpha)$, denotada de forma abreviada como α. Por tanto a la temperatura de 379°C, justo antes de la reacción monotéctica ternaria la fase $Al(fcc-\alpha)$ ya ha empezado a precipitar y solo hay presente uno de los dos líquidos.

Figura 92. Isoterm a 379°C, justo por encima de la transformación Monotéctica [188].
En la figura 93 se muestra el diagrama ternario Zinc-Aluminio-Bismuto a la temperatura de 300ºC, entre la transformación monotéctica ternaria: \(L \leftrightarrow \text{Al}(fcc-\alpha') + \text{Zn}(hcp-\beta) \) y la eutectoide ternaria \(\text{Al}(fcc-\alpha') \leftrightarrow \text{Al}(fcc-\alpha) + \text{Zn}(hcp-\beta) \).

Figura 93. Isoterma a 300ºC, entre la transformación Monotéctica y la Eutectoide [188].

A la temperatura de 300ºC, las fases que se encuentran presentes en las aleaciones marcadas con la línea morada discontinua de la figura 94 son, la fase líquida, \(L'' \), y las fases \(\text{Al}(fcc-\alpha') \) y \(\text{Al}(fcc-\alpha) \). La fase correspondiente al zinc \(\text{Zn}(hcp-\beta) \), no aparece reflejada en el diagrama ternario, esto quiere decir que la reacción monotéctica ternaria tampoco tiene lugar para el conjunto de aleaciones 40%Zn-60%Al + adiciones de bismuto.

En la figura 94, se presenta la isoterma a 270ºC, del sistema ternario Zinc-Aluminio–Bismuto.

Figura 94. Isoterma a 270ºC, entre la transformación Eutectoide y Eutéctica [188].
El diagrama ternario de la figura 96 muestra que a la temperatura de 270ºC, aún está presente la fase líquida L'', junto con las fases $Al(fcc-\alpha)$ y $Zn(hcp-\beta)$. Esto quiere decir que la transformación eutéctoide ya se ha producido y la reacción eutéctica ternaria $L'' \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) + Bi(Romb)$ aún no, ya que de otra forma la fase líquida L'' habría desaparecido.

Por último, en el diagrama de la figura 95, se representa la isoterma a 240ºC, temperatura a la cual la reacción eutéctica ternaria ha tenido que producirse.

Figura 95. Isoterma a 240ºC después de la transformación Eutéctica [188].

Como se observa en la figura 96, la línea morada discontinua, que marca las composiciones de las aleaciones en estudio en este aportado, se encuentra en la zona del diagrama donde coexisten las fases $Al(fcc-\alpha)$, $Zn(hcp-\beta)$ y $Bi(Romb)$, confirmando que ha tenido lugar ya la reacción eutéctica ternaria.

Una vez conocido que la reacción monotéctica no tiene lugar para las aleaciones de composición 40%Zinc-60%Aluminio + adiciones de Bismuto, se analizan la evolución de las fases presentes desde la temperatura de 700ºC hasta 100ºC. En la figura 96 se muestran las gráficas obtenidas mediante simulación con Thermo-Calc [188], representan la evolución de las fases presentes en las aleaciones frente a la temperatura.
Comparando las gráficas de la figura 96 con la gráfica de la figura 84 del material base, se observan claras diferencias. Con la adición de bismuto aparecen dos líquidos, L' y L'', los cuales siguen caminos diferentes de solidificación y una nueva fase, perteneciente al bismuto, con el mismo comportamiento que para las aleaciones anteriormente estudiadas base 20%Zinc-80%Aluminio.

Figuras 96. Obtención mediante Thermo-Calc [188] de la evolución de la formación de las fases para la aleación 40%Zn-60%Al con contenidos crecientes de bismuto.
Observando las gráficas de la figura 97, conforme aumenta el contenido en bismuto añadido, la fracción molar de L'', representada por una línea de color azul en todas las gráficas aumenta y la del líquido L' disminuye.

A la temperatura de 700ºC la aleación está formada por dos fases líquidas, L' y L''. A medida que la disminuye la temperatura, la composición de la fase L' disminuye también hasta llegar a una temperatura a la cual comienza a precipitar la fase $Al(fcc-a')$.

En la tabla 35 se muestran las temperaturas a las cuales comienza a solidificar.

Tabla 35. Temperaturas del inicio de la solidificación de la aleación por formación de la fase $Al(fcc-a')$ para las aleaciones 40%Zinc-60%Aluminio con contenidos crecientes de bismuto.

<table>
<thead>
<tr>
<th>Temperatura de inicio solidificación de la aleación por formación de fase $Al(fcc-a')$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40%Zinc-60%Aluminio</td>
<td>536ºC</td>
</tr>
<tr>
<td>40%Zinc- 60%Aluminio + 10%Bismuto</td>
<td>549ºC</td>
</tr>
<tr>
<td>40%Zinc- 60%Aluminio + 20%Bismuto</td>
<td>553ºC</td>
</tr>
<tr>
<td>40%Zinc- 60%Aluminio + 30%Bismuto</td>
<td>556ºC</td>
</tr>
<tr>
<td>40%Zinc- 60%Aluminio + 40%Bismuto</td>
<td>564ºC</td>
</tr>
<tr>
<td>40%Zinc- 60%Aluminio + 50%Bismuto</td>
<td>566ºC</td>
</tr>
<tr>
<td>40%Zinc- 60%Aluminio + 60%Bismuto</td>
<td>576ºC</td>
</tr>
</tbody>
</table>

Observando las temperaturas de inicio de la solidificación de las aleaciones por la precipitación de la fase $Al(fcc-a')$, en la aleación base esta fase comienza a precipitar a la temperatura de 536ºC y conforme aumenta el contenido de bismuto añadido, la fase $Al(fcc-a')$, precipita a mayores temperaturas, es decir, que la adición de bismuto retarda la aparición o precipitación de las dendritas primarias de fase $Al(fcc-a')$.

En este punto hay que destacar el hecho que a partir de la aleación con adición del 40%Bi, la fase que precipita primero es la $Al(fcc-a)$ y no la $Al(fcc-a')$ con altos contenidos en zinc en su microestructura. Esto es debido a que conforme se va añadiendo bismuto a la aleación base nos desplazamos en el diagrama de fases lo suficiente como para que cambie la fase que inicialmente precipita.
A medida que la temperatura va disminuyendo, la composición del líquido L' (línea roja en las gráficas) disminuye y la composición de la fase $Al(fcc-a)$ aumenta, hasta llegar a una temperatura a la cual todo el líquido L' se ha consumido.

Esta temperatura también aumenta con las adiciones de bismuto, al igual que pasaba con la temperatura de inicio de la solidificación de la aleación. A partir de aquí, conforme sigue disminuyendo la temperatura, las fases presentes para las aleaciones con adiciones del 10%, 20% y 30% de Bi son $Al(fcc-a')$ y el segundo líquido L'', y para las aleaciones con las adiciones del 40%, 50% y 60% de bismuto, las fases $Al(fcc-a)$ y L''

A la temperatura de 349ºC comienza a formarse la fase $Al(fcc-a)$ para las aleaciones con adiciones del 10%, 20% y 30%Bi y la fase $Al(fcc-a')$ para las aleaciones con adiciones del 40%, 50% y 60%Bi, y esta temperatura es la misma para todas las aleaciones, es decir, que el contenido creciente de bismuto en las aleaciones 40%Zn-60%Al no influye en la formación de la segunda fase $Al(fcc-a)$ o $Al(fcc-a')$. A partir de la temperatura de 349ºC las fases que se encuentran en la aleación son L'', $Al(fcc-a)$ y $Al(fcc-a')$. La transformación monotéctica ternaria que está descrita a 376ºC [30, 31], tampoco se da para estas composiciones, como ya se ha comentado en la discusión de los diagramas ternarios anteriormente.

Cuando la temperatura desciende hasta los 277,63ºC comienza a formarse la fase $Zn(hcp-β)$, ya que se produce la transformación eutectoide ternaria $Al(fcc-a') ↔ Al(fcc-a) + Zn(hcp-β)$. En las gráficas de la figura 96 la letra U mayúscula marca el punto donde tiene lugar dicha transformación. Esta reacción proviene casi exclusivamente de la eutectoide binaria Zn-Al, como ya se comentó para la aleación anterior 20%Zn-80%Al, por eso, las temperaturas de ambas reacciones son tan similares. La transformación eutectoide implica que la fase $Al(fcc-a')$ desaparezca, y que la composición de la fase $Al(fcc-a)$ aumente considerablemente.
En la tabla 36, se muestran las fracciones molares de las fases presentes involucradas en la transformación eutectoide ternaria. Aunque el líquido L'' no participa en dicha transformación, se ha incluido en la tabla para ver su evolución.

Tabla 36. Variación de la composición de las fases durante la transformación eutectoide ternaria

<table>
<thead>
<tr>
<th>Aleación</th>
<th>Al(fcc-α')</th>
<th>Al(fcc-α)</th>
<th>Zn(hcp-β)</th>
<th>L''</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10%Bi</td>
<td>0,51</td>
<td>0,62</td>
<td>0,26</td>
<td>0,10</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>0,44</td>
<td>0,57</td>
<td>0,23</td>
<td>0,18</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>0,39</td>
<td>0,53</td>
<td>0,21</td>
<td>0,25</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>0,35</td>
<td>0,49</td>
<td>0,18</td>
<td>0,31</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>0,31</td>
<td>0,45</td>
<td>0,16</td>
<td>0,37</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>0,28</td>
<td>0,43</td>
<td>0,15</td>
<td>0,41</td>
</tr>
</tbody>
</table>

De los datos recogidos en la tabla 36 se observa que para todas las aleaciones la fase mayoritaria tras producirse la transformación eutectoide ternaria es la del aluminio Al(fcc-α). En cuanto a la composición del líquido L'', es lógico que aumente su fracción molar a medida que lo hace también el porcentaje de bismuto añadido ya que, dicho líquido es mayoritario en bismuto.

El que las fracciones molares de las fases Al(fcc-α), Zn(hcp-β) y Al(fcc-α'), disminuyan con la adición de bismuto, se explica por el hecho de que conforme se va añadiendo más cantidad de bismuto a la aleación se va favoreciendo la transformación eutéctica ternaria que deriva exclusivamente del líquido L''.

Una vez transcurrida la reacción eutectoide ternaria, si la temperatura continua descendiendo hasta los 256,42°C, tienen lugar la transformación eutéctica ternaria y se da exclusivamente a partir de líquido L'' según el equilibrio: $L'' \leftrightarrow Bi(romb) + Al(fcc-α) + Zn(hcp-β)$. En la tabla 37 se resumen los datos de las fracciones molares de las fases anteriormente citadas y que participan en la reacción eutéctica ternaria.

Tabla 37. Variación de la composición de las fases durante la transformación eutéctica ternaria

<table>
<thead>
<tr>
<th>Aleación</th>
<th>L''</th>
<th>Al(fcc-α)</th>
<th>Zn(hcp-β)</th>
<th>Bi(romb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10%Bi</td>
<td>0,098</td>
<td>0,60</td>
<td>0,30</td>
<td>0,09</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>0,18</td>
<td>0,55</td>
<td>0,27</td>
<td>0,16</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>0,25</td>
<td>0,51</td>
<td>0,25</td>
<td>0,23</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>0,31</td>
<td>0,47</td>
<td>0,23</td>
<td>0,28</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>0,36</td>
<td>0,44</td>
<td>0,22</td>
<td>0,33</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>0,40</td>
<td>0,41</td>
<td>0,20</td>
<td>0,37</td>
</tr>
</tbody>
</table>
Como se observa en los datos de la tabla 37, el líquido L'' cuyas fracciones molares varían entre los 0,098-0,40 en función de la cantidad de bismuto añadida, se transforma casi exclusivamente en la fase correspondiente al bismuto, es decir que las fases $Al(fcc-\alpha)$ y $Zn(hcp-\beta)$ apenas participan en la reacción eutéctica ternaria, sus composiciones antes y después de dicha reacción son prácticamente las mismas.

5.6.1 40%Zn-60%Al + 10%Bi, caracterización microestructural

Una vez realizada la simulación termodinámica para las aleaciones 40%Zn-60%Al + adiciones de bismuto, se procedió a caracterizar las microestructuras de cada una de ellas. Las imágenes obtenidas mediante microscopía óptica para la aleación 40%Zn-60%Al + 10%Bi, se muestran en la figura 97.

La microestructura mayoritaria de color claro está compuesta por dendritas de fase $Al(fcc-\alpha')$, y por tanto la transformación eutectoide tendría que producirse en ellas, y aparentemente no se observa la microestructura característica de esta transformación compuesta por láminas alternas de fase $Al(fcc-\alpha)$ y fase $Zn(hcp-\beta)$. Rodeando a esas dendritas de fase $Al(fcc-\alpha')$ se encuentra la microestructura característica del eutéctico ternario compuesto por las fases $Al(fcc-\alpha)$, $Zn(hcp-\beta)$ y $Bi(romb)$, pero tampoco se observa con el microscopio óptico dichas microestructuras.

Figura 97. a) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 40%Zn-60%Al + 10%Bi enfriada al aire; b) Detalle de la microestructura obtenida mediante Microscopía óptica a 500 aumentos de la aleación 40%Zn-60%Al + 10%Bi enfriada al aire.
El 10% de bismuto, que forma parte mayoritaria del líquido de \(L'' \), que se ha añadido a la aleación base 40%Zn-60%Al, se localiza en los bordes de las dendritas. Este hecho se observaba igualmente para la aleación 20%Zn-80%Al.

En la figura 98 se representa el análisis térmico realizado a una muestra de bismuto.

Figura 98. Análisis térmico diferencial de la etapa de calentamiento de una muestra de bismuto metálico.

Si nos fijamos en la curva térmica de la figura 98, el bismuto comienza a fundir a 261°C, por tanto el bismuto sería el último en solidificar en la etapa de enfriamiento si se mantuviese aislado sin formar parte de ninguna reacción en el sistema ternario formado por el zinc, aluminio y el propio bismuto.

Como se ha comentado anteriormente, el líquido \(L'' \) está formado mayoritariamente por bismuto, y es a partir de este líquido \(L'' \) cuando se produce la transformación eutéctica ternaria a 251°C. Este ensayo ha servido para verificar que el bismuto no se encuentra aislado en las aleaciones, sino que participa activamente, de lo contrario se obtendría en todos los análisis térmicos un pico como el de la figura 98.

A continuación se caracteriza la muestra 40%Zn-60%Al + 10%Bi mediante microscopía electrónica de barrido. La imagen que se obtiene se muestra en la figura 99.
En la imagen de la figura 99 se observan una serie de puntitos de color blanco situados en los bordes de la fase mayoritaria de color oscuro constituida por las dendritas de fase $\text{Al}^{(\text{fcc-}\alpha')}$. Estas partículas blancas son de bismuto y provienen del la última fase en solidificar, la fase líquida L'' y han quedado atrapadas en el proceso de enfriamiento en los espacios interdendríticos. La distribución de estas partículas blancas es de forma homogénea a los largo de toda la aleación. Para confirmar la identidad de estas partículas blancas, se realiza un análisis tipo mapping, el resultado se muestra en la figura 100.

Las imágenes de la figura 100 confirman que las partículas de color blanco observadas en la imagen de la figura 99 son mayoritariamente bismuto. También se observa que las fase mayoritaria de color rojo, está constituida por dendritas de fase $\text{Al}^{(\text{fcc-}\alpha)}$ y no de fase $\text{Al}^{(\text{fcc-}\alpha')}$ como predice la simulación termodinámica, de otra forma el zinc debería haber aparecido en el interior de la dendritas como resultado de la transformación eutectoide que tiene lugar en ellas, por el contrario, el zinc de color verde, se localiza en los bordes de las dendritas de fase $\text{Al}^{(\text{fcc-}\alpha)}$, como se observa en la imagen central de la figura 100.
La imagen de la figura 101 muestra una ampliación de una de las zonas observadas en la figura 100 y en la tabla 38 el resultado del análisis realizado en la zona oscura señalada con una flecha roja.

Tabla 38. Microanálisis semi-cuantitativo por EDX (Energy-dispersive X-ray) de la aleación 40%Zn-60%Al+10%Bi, realizado en la flecha roja de la imagen de la figura 101.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Peso %</th>
<th>Atómico %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>23.01</td>
<td>30.12</td>
</tr>
<tr>
<td>Zn</td>
<td>48</td>
<td>25.93</td>
</tr>
<tr>
<td>Bi</td>
<td>9.84</td>
<td>1.66</td>
</tr>
<tr>
<td>O</td>
<td>19.15</td>
<td>42.28</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

En la figura 101 se observan varias partículas de color claro correspondientes al bismuto, situadas en las zonas interdendríticas de la fase Al(fcc-α) y adheridas a la fase de color más oscuro. El análisis realizado en esta zona más oscura y marcada con la flecha roja muestra al zinc como elemento mayoritario, así pues el bismuto se localiza preferencialmente en los bordes interdendríticos y unido a la fase Zn(hcp-β) de la aleación. En las figuras 102 y 103, se muestran las curvas térmicas de las etapas de calentamiento y enfriamiento respectivamente realizadas a la muestra 40%Zn-60%Al+10%Bi. El esquema de colores es igual que el utilizado para las aleaciones anteriores.
Los datos de temperatura asociados a los picos obtenidos en las curvas térmicas de las figuras 102 y 103, se recogen en las tablas 39 y 40.

Tabla 39 y 40. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA de la aleación de composición 40%Zn-60%Al + 10%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (fig.102)</th>
<th>Datos de temperatura en la etapa de enfriamiento (fig.103)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%Zn-60%Al + 10%Bi</td>
<td>Eutéctico Ternario</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Pico Máximo(°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td>251,72</td>
<td>254,17</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,43</td>
<td>253,82</td>
</tr>
</tbody>
</table>

Si nos fijamos en las curvas verde y roja de la figura 102, correspondientes a las aleaciones base en la etapa de calentamiento, se obtienen dos picos. El mayor corresponde con la fusión de la aleación y el pequeño con la transformación eutectoide. Al añadir el bismuto a la mezcla binaria de Zn-Al, curvas azul y negra de la figura 102, se observa la aparición de un tercer pico de tamaño más pequeño que el de la transformación eutectoide. En las tablas 39 y 40 se ve que este tercer pico tiene lugar en torno a los 251°C, que de acuerdo con la bibliografía tratada [30, 31], corresponde con la transformación eutéctica ternaria Zn-Al-Bi: $L' \leftrightarrow Bi(romb) + Zn(hcp-β) + Al(fcc-α)$. En los datos de temperatura de la tabla 39 se observa que la adición de bismuto no influye en la temperatura de la transformación eutectoide, ya que se obtienen valores de temperatura par las cuatro muestras prácticamente idénticas. El problema reside en conocer a que sistema corresponde esta transformación, ya que para el binario Zn-Al, la transformación eutectoide tiene lugar a los 277,2°C [30, 31, 161] y en el ternario Zn-Al-Bi lo hace a los 278,1°C [30, 31].
Ambas temperaturas están muy próximas entre sí y es debido a que la transformación que tiene lugar en el sistema binario es la misma que la que tiene lugar en el sistema ternario, con la única diferencia de la presencia de la fase líquida L'' en la transformación eutectoide del sistema ternario. En la etapa de enfriamiento se pierde el pico correspondiente a esta transformación.

En cuanto a los datos de temperatura de inicio y final de la fusión de la aleación, la adición de bismuto provoca una disminución en la temperatura del inicio de la misma, en torno a los 10°C (506,92°C y 506,42°C – 494,29°C y 483,68°C) es decir, que el bismuto hace que la fase $Al(fcc-\alpha)$ comience a fundirse antes, el bismuto favorece de algún modo la fusión de la fase $Al(fcc-\alpha)$.

Este fenómeno también se ha observado para la aleación de composición 20%Zn-80%Al, pero en menor medida, en torno a unos 7°C de disminución.

En cuanto a la etapa de enfriamiento mostrada en la figura 103 y en la tabla 40, al igual que ha pasado para las aleaciones anteriores, los datos de temperatura son muy diferentes a los obtenidos en la etapa de calentamiento. Las temperaturas de inicio de la fusión de la aleación, 494,29°C y 483,68°C deberían coincidir con las temperaturas de final de la solidificación en la etapa de enfriamiento, 550,38°C y 534,21°C.

En la figura 104, se representa el ensayo termogravimétrico realizado a las aleaciones 40%Zinc-60%Aluminio con un contiendo en bismuto del 10%.

![Figura 104. Gráfica comparativa de los Análisis termogravimétricos para las aleaciones 40%Zn-60%Al + 10%Bi.](image)
Como se observa en las curvas termogravimétricas de la figura 105, a partir de la temperatura de 500°C, el peso de las muestras comienza a caer hasta llegar a la temperatura de 700°C a la cual, la muestra B ha perdido un 25% del peso inicial y la muestra A un 29%. Este hecho se ha observado igualmente para las aleaciones anteriormente estudiadas y provoca que las temperaturas obtenidas en la etapa de enfriamiento no coincidan con las de la etapa de calentamiento.

También se ha observado que la muestra que ha sido enfriada en el interior del horno, muestra A, sufre una pérdida de peso mayor que la muestra que ha sido enfriada al aire, muestra B, debido a que la muestra A sufre un enfriamiento más lento y por tanto, se encuentra más tiempo expuesta a temperaturas altas, a las cuales la muestra está perdiendo masa.

5.6.2 40%Zn-60%Al + 20%Bi, caracterización microestructural

La siguiente adición de bismuto realizada a la aleación base 40%Zinc-60%Aluminio es del 20%. Las imágenes de la microestructura de la aleación resultante, obtenidas mediante microscopía óptica, se muestran en la figura 105.

En las imágenes a) y b) de la figura 105 se muestra el aspecto superficial de la aleación 40%Zn-60%Al con la adición de 20%Bi. Al igual que pasaba con la adición de un 10%Bi, la simulación termodinámica predice que las dendritas primarias que solidifican son de fase Al(fcc-α'), pero tampoco se observa en la microestructura resultados de la transformación eutectoide en el interior de las mismas.
El líquido L'', rodeado con círculos blancos en la imagen b), se sitúa en los espacios interdendríticos y posteriormente solidifica y deriva en la transformación eutéctica ternaria.

Las gráficas de las curvas del programa de temperatura controlado, se muestran en las figuras 106 y 107.

![Figura 106. Análisis térmico diferencial de la etapa de calentamiento de la aleación 40%Zn-60%Al + 20%Bi.](image1)

![Figura 107. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 40%Zn-60%Al + 20%Bi.](image2)

Los datos de temperatura correspondientes a los picos obtenidos en las curvas de las figuras 106 y 107 se recogen en las tablas 41 y 42.

Tabla 41. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico, DTA, de la aleación de composición 40%Zn-60%Al + 20%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (fig.106)</th>
<th>Eutéctico Ternario</th>
<th>Eutectoide</th>
<th>Fusión de la aleación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>-</td>
<td>-</td>
<td>277,54</td>
<td>283,54</td>
</tr>
<tr>
<td>Base B</td>
<td>-</td>
<td>-</td>
<td>276,45</td>
<td>283,21</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,02</td>
<td>254,55</td>
<td>276,44</td>
<td>283,84</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,66</td>
<td>254,51</td>
<td>275,99</td>
<td>280,85</td>
</tr>
</tbody>
</table>
Tabla 42. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico, DTA, de la aleación de composición 40%Zn-60%Al + 20%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (fig.107)</th>
<th>Solidificación de la aleación por formación de fase Al(fcc-α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctico</td>
<td>Ternario</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>229,04</td>
<td>226,32</td>
</tr>
<tr>
<td>Muestra A</td>
<td>229,04</td>
<td>226,32</td>
</tr>
<tr>
<td>Muestra B</td>
<td>229,04</td>
<td>226,32</td>
</tr>
</tbody>
</table>

Los picos obtenidos tanto en las curvas de la etapa de calentamiento, mostradas en la figura 106 como los obtenidos en las curvas en la etapa de enfriamiento de la figura 107, son similares a los obtenidos para la aleación anteriormente estudiada de composición 40%Zn-60%Al + 10%Bi. En la etapa de enfriamiento se sigue sin ver el pico de la transformación eutectoide ternaria.

5.6.3 40%Zn-60%Al + 30%Bi, caracterización microestructural

En las imágenes de la figura 108 se muestra la caracterización de la muestra 40%Zn-60%Al + 30%Bi.

Figura 108. a) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 40%Zn-60%Al + 30%Bi enfriada al aire; b) Detalle de la microestructura obtenida mediante Microscopía óptica a 500 de la aleación 40%Zn-60%Al + 30%Bi enfriada al aire.
El único hecho a destacar, y que no se ha observado en las aleaciones anteriores es la aparición en el interior de las dendritas de fase Al(fcc-α) de pequeños brazos o dendritas inferiores. Esto sólo se ha observado en un área concreta de la muestra, y es posible que sea la microestructura derivada de la transformación eutectoide ternaria que en las dos aleaciones anteriores no se ha observado o simplemente una zona que ha sufrido un mayor ataque químico a la hora de revelar la microestructura. El resto de la microestructura es similar a las de las aleaciones anteriores, dendritas primarias de fase Al(fcc-α) y en los huecos interdendríticos las fases Bi(romb), Al(fcc-α) y Zn(hcp-β), resultado de la transformación eutéctica ternaria.

El análisis térmico mostrado en las figuras 109 y 110, pondrá de manifiesto cualquier cambio que haya podido sufrir esta aleación en particular, en relación con alguna fase o transformación nueva formada en dicha aleación.

Tanto las curvas de la etapa de calentamiento como las de la etapa de enfriamiento, no reflejan diferencias si las comparamos con las obtenidas para el caso anterior con una adición de un 20% de bismuto. Por tanto las dendritas pequeñas que se han observado en las imágenes de la figura 138, son simplemente un ataque excesivo en esa zona en concreto de la muestra.

Todas las temperaturas obtenidas en las curvas de las figuras 109 y 110, se recogen en las tablas 43 y 44.
Los resultados obtenidos en los ensayos térmicos para la muestra 40%Zn-60%Al + 30%Bi no muestran tampoco diferencias si los comparamos con los resultados obtenidos para las aleaciones 40%Zn-60%Al con adiciones del 10% y 20% de bismuto. Las temperaturas de inicio y final de los picos aparecidos en las diferentes curvas térmicas son similares para todas las aleaciones.

5.6.4 40%Zn-60%Al + 40%Bi, caracterización microestructural

A continuación, se le añade a la aleación base un 40% de bismuto. Las imágenes que se muestran en la figura 111, corresponden con la caracterización mediante microscopía óptica de la microestructura de la aleación resultante.
El aspecto de la microestructura obtenido con la adición de un 40% Bi, figura 111, a diferencia de las adiciones de un 10, 20 y 30% de bismuto, se observa que en los espacios interdendríticos son mayores, es decir, hay más cantidad de fase Al(fcc-α).

La simulación termodinámica predice que para esta composición se produce la inversión de la fase que inicialmente precipita, pero ya se ha visto para las aleaciones anteriores que los resultados experimentales no coinciden con los de la simulación termodinámica y la fase que inicialmente precipita para todas las aleaciones es la fase Al(fcc-α).

Siguiendo con el esquema de exposición de resultados, en las figuras 112 y 113 se muestran las curvas térmicas correspondientes al programa térmico realizado a las muestras 40% Zn-60% Al + 40% Bi.

Al igual que para las aleaciones con adiciones de bismuto del 10%, 20% y 30%, en la etapa de calentamiento se observan tres picos, el primero corresponde a la transformación eutéctica ternaria, el segundo pico corresponde a la reacción eutectoide ternaria y el último con la fusión de la aleación. En las curvas verde y roja, correspondientes a las aleaciones base sin la adición de bismuto, sólo se observan dos picos, el primero corresponde con la reacción eutectoide binaria y el segundo de mayor tamaño con la fusión de la aleación. Mirando las cuatro curvas en global se puede observar que el pico de mayor tamaño, correspondiente a la fusión de la aleación, es similar para todas las aleaciones y el pico correspondiente a la transformación...
Resultados y Discusión

eutectoide ternaria es también similar al pico de la reacción eutectoide binaria de las aleaciones base, ya que la reacción eutectoide ternaria deriva casi exclusivamente de la reacción eutectoide binaria [30, 31].

En la etapa de enfriamiento, se obtienen únicamente el pico correspondiente a la solidificación de la aleación por formación de fase Al(fcc-α) y el correspondiente a la reacción eutéctica ternaria, este último pico es el de menor tamaño. Por tanto en la etapa de enfriamiento de la muestra no se detecta el pico correspondiente a la transformación eutéctica ternaria.

Los datos de temperatura de las curvas de las figuras 112 y 113 se recogen en las tablas 45 y 46.

Tabla 45 y 46. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA de la aleación de composición 40%Zn-60%Al + 40%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (fig.112)</th>
<th>Datos de temperatura en la etapa de enfriamiento (fig.113)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctico Ternario</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,19</td>
<td>254,89</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,29</td>
<td>253,84</td>
</tr>
</tbody>
</table>

Las temperaturas asociadas a los diferentes picos son similares a las obtenidas en los ensayos térmicos de las aleaciones con adiciones del 10%, 20% y 30% de bismuto.
5.6.5 40%Zn-60%Al + 50%Bi, caracterización microestructural

La siguiente adición de bismuto realizada a la aleación base 40%Zn-60%Al, es del 50%. Las imágenes obtenidas con el microscopio óptico de la microestructura de esta nueva aleación se muestran en la figura 114.

![Figura 114. a) Microestructura obtenida mediante Microscopía óptica a 100 aumentos de la aleación 40%Zn-60%Al + 50%Bi enfriada al aire; b) Detalle de la microestructura obtenida mediante Microscopía óptica a 200 de la aleación 40%Zn-60%Al + 50%Bi enfriada al aire.](image)

En las imágenes de la figura 114, se observa una microestructura formada por un gran número de dendritas de fase Al(fcc-α) en cuyos bordes se localiza el líquido L'', que mediante la transformación eutéctica ternaria solidifica, dando lugar a las fases Al(fcc-α), Zn(hcp-β) y Bi(romb). Esta misma microestructura es la que ha se ha observado en las aleaciones anteriores con adiciones del 10%, 20%, 30%, y 40% de bismuto. La única diferencia apreciable en esta aleación, con un 50%Bi, con respecto a las aleaciones anteriores es que se observa mayor cantidad de la fase líquida L'' en forma de pequeñas partículas compuestas mayoritariamente por bismuto.

En las figuras 115 y 116 se representan las curvas térmicas tanto de la etapa de calentamiento como la de enfriamiento para las diferentes aleaciones, y en las tablas 47 y 48 se recogen todas las temperaturas asociadas a los picos aparecidos en las gráficas anteriormente citadas.
Los resultados de la adición de un 50% de bismuto a la aleación 40\%Zn-60\%Al, no conllevan cambios significativos en las temperaturas obtenidas en los ensayos térmicos, si las comparamos con las señales obtenidas para aleaciones anteriores.
5.6.6 40%Zn-60%Al + 60%Bi, caracterización microestructural

La última adición realizada a la aleación de composición 40%Zn-60%Al es la del 60% de bismuto. La caracterización mediante microscopía óptica de la microestructura de la aleación resultante, se muestra en las imágenes de la figura 118.

Al añadir a la aleación base 40%Zn-60%Al un 60% en peso de bismuto se observan cambios en la microestructura con respecto a las aleaciones anteriores con adiciones del 10%, 20%, 30%, 40% y 50% de bismuto. La imagen a) de la figura 118 muestra la microestructura característica del eutéctico ternario Zn-Al-Bi [30].

La imagen b) de la figura 118 corresponde con otra zona observada de la muestra, donde el aspecto de la microestructura es igual que el observado en las aleaciones anteriores, es decir, dendritas primarias de fase Al(fcc-α) rodeadas de las fases Bi(romb), Al(fcc-α) y Zn(hcp-β) resultantes de la transformación eutéctica ternaria y situadas en las zonas interdendríticas de color claro, y las fases Al(fcc-α) y Zn(hcp-β) resultantes de la transformación eutectoide ternaria y situadas en las zonas interdendríticas de color oscuro.

En la imagen de la figura 119, se muestra la imagen obtenida mediante SEM de la zona correspondiente al eutéctico ternario observado mediante microscopía óptica en la figura 118.
Con el fin de conocer la composición de las diferentes zonas que se aprecian en la microestructura del eutéctico ternario de la imagen de la figura 119, se realizan unos análisis puntuales en las zonas marcadas en la imagen como 1, 2, 3 y 4. Los resultados obtenidos en los cuatro análisis puntuales se muestran en la tabla 49.

El análisis realizado en el punto 1 situado sobre una de las agujas de color claro en la imagen de la figura 119, revela que dichas agujas están constituidas mayoritariamente por bismuto y muy minoritariamente por zinc y aluminio. En las tablas 7 y 8, se observa que el bismuto, disuelve pequeñas cantidades de cinc y aluminio, por tanto las espigas de color más claro que se observan están compuestas por bismuto y disuelto en él, pequeñas cantidades de Zn y Al.
El análisis realizado en el punto 2 situado sobre la zona mayoritaria de la microestructura de color claro, muestra una composición del 100% de bismuto es decir, que toda la fase de color claro que rodea a las espigas y dendritas de color negro de la figura 120, está constituido exclusivamente por bismuto.

El análisis realizado en el punto marcado con el número 3 y situado sobre una de las agujas de color negro de la imagen de la figura 119, muestra al zinc y bismuto como elementos mayoritarios y al aluminio como elemento minoritario. Estos resultados concuerdan con los datos obtenidos mediante simulación termodinámica con Thermo-Calc [188] para la reacción eutéctica ternaria mostrados en la tabla 37. Según la termodinámica, la fase líquida \(L'' \) da lugar a la reacción eutéctica ternaria mediante la cual se transforma en las fases \(Bi(\text{romb}) \), \(Al(fcc-\alpha) \) y \(Zn(hcp-\beta) \). En la tabla 37 se observa que la composición de la fase \(Al(fcc-\alpha) \) aumenta solo ligeramente manteniéndose prácticamente constante tras esta reacción, es decir que la fase \(Al(fcc-\alpha) \) participa en la reacción eutéctica ternaria de forma minoritaria, por eso el aluminio aparece en los análisis 1, 2 y 3 como el elemento minoritario.

Para terminar con la caracterización de la microestructura del eutéctico ternario, se realiza un último análisis puntual sobre una de las dendritas de color negro que se observan en la imagen de la figura 119 y que se encuentra marcado con el punto 4. El resultado del análisis muestra que estas pequeñas dendritas están constituidas mayoritariamente por aluminio y por zinc, el bismuto no forma parte de estas pequeñas dendritas.

Dado que el bismuto no se encuentra formando parte de estas dendritas, éstas no se formarían a partir de la reacción eutéctica ternaria, su presencia en la zona de la muestra donde se ha observado la microestructura correspondiente a dicha transformación, es debida a que su precipitación tiene lugar antes que se produzca la reacción eutéctica ternaria, quedando atrapadas en la última fase que solidifica en la aleación, que es la fase líquida \(L'' \).

En las gráficas de las figuras 120 y 121, se muestran los resultado obtenidos en el ensayo térmico realizado a las muestras de composición 40%Zn-60%Al + 60%Bi.
Resultados y Discusión

Los datos de temperatura obtenidos para cada uno de los picos observados en las etapas de calentamiento y enfriamiento para la aleaciones 40%Zn-60%Al + 60%Bi, se recogen en las tablas 50 y 51.

Tabla 50 y 51. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 40%Zn-60%Al + 60%Bi.

Datos de temperatura en la etapa de calentamiento (fig.120)

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Eutéctico Ternario</th>
<th>Eutectoide</th>
<th>Fusión de la aleación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>-</td>
<td>-</td>
<td>277,54</td>
</tr>
<tr>
<td>Base B</td>
<td>-</td>
<td>-</td>
<td>276,50</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,04</td>
<td>255,42</td>
<td>277,16</td>
</tr>
<tr>
<td>Muestra B</td>
<td>253,03</td>
<td>256,69</td>
<td>276,37</td>
</tr>
</tbody>
</table>

Datos de temperatura en la etapa de enfriamiento (fig.121)

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Eutéctico Ternario</th>
<th>Eutectoide</th>
<th>Solidificación de la aleación por formación de fase Al(fcc-α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td>231,53</td>
<td>234,67</td>
<td>-</td>
</tr>
<tr>
<td>Muestra B</td>
<td>225,93</td>
<td>222,06</td>
<td>-</td>
</tr>
</tbody>
</table>

Figura 120. Análisis térmico diferencial de la etapa de calentamiento de la aleación 40%Zn-60%Al + 60%Bi.

Figura 121. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 40%Zn-60%Al + 60%Bi.
Los resultados obtenidos en el programa de temperatura controlada, muestran un pequeño aumento de la temperatura de inicio de la transformación eutéctica, si se compara con la temperatura de inicio de las aleaciones anteriores con adiciones del 10%, 20%, 30%, 40% y 50% de bismuto, y que era de entorno a los 251°C y 253,03°C.

En cuanto a las temperaturas de la transformación eutectoide, no sufren cambios apreciables, la temperatura para todas las aleaciones se encuentra entre los 276°C-277°C. Pero en la temperatura del inicio de la fusión de la aleación se observa un aumento importante, 525,6°C y 547,70°C, en torno a los 30°C más de lo que se obtenían para las aleaciones anteriores, es decir que la fase $\text{Al(fcc-}\alpha)$ comienza a precipitar más tarde.

Al igual que se ha hecho para las muestras de las aleaciones 20%Zn-80%Al + 60%Bi, y con el propósito de ver la influencia, que tiene el tipo de enfriamiento que sufren las muestras, en el ensayo térmico en la figura 122, se muestra las curvas del tipo TGA de las aleaciones base 40%Zn-60%Al base y con la adición del 60% de bismuto.

![Figura 122. Gráfica comparativa de los Análisis termogravimétricos para las aleaciones 40%Zn-60%Al bases y las aleaciones con la adición de un 60%Bi.](image-url)
De acuerdo a las curvas mostradas en la figura 122, la adición de bismuto a la aleación binaria 40%Zn-60%Al provoca una estabilización térmica de la misma, ya que el peso que pierden las muestras con bismuto después del ensayo térmico, es menor que el peso que pierden las muestras sin la adición de bismuto. Y comparando las muestras que han sido enfriadas al aire, curvas roja y negra de la figura 122, con las que han sido enfriadas en el interior del horno, curvas verde y azul, pierden menos peso, es decir, que un enfriamiento rápido realizado a la muestra hace que esta sea también más estable térmicamente. Por tanto la adición de bismuto y un enfriamiento rápido de la muestra implica un comportamiento más estable en el ensayo térmico del tipo TGA.

A modo de resumen de la parte de caracterización microestructural mediante microscopía óptica de las aleaciones 40%Zn-60%Al + adiciones de bismuto, en la figura 123 se muestra un esquema en forma de seis imágenes correspondientes a las seis aleaciones que han sido estudiadas y caracterizadas en esta sección. En la parte central de la figura 123 se muestra la isoterma a 240ºC del diagrama ternario Zn-Al-Bi y con la línea morada discontinua, la localización de las composiciones estudiadas.

Figura 123. Microestructuras obtenidas mediante microscopía óptica para las aleaciones a) 40%Zn-60%Al + 10%Bi X200, b) 40%Zn-60%Al + 20%Bi X100; c) 40%Zn-60%Al + 30%Bi X200; d) 40%Zn-60%Al + 40%Bi X100; e) 40%Zn-60%Al + 50%Bi X100; f) 40%Zn-60%Al + 60%Bi X100; g) 40%Zn-60%Al + 60%Bi X100.
Resultados y Discusión

El aspecto de la microestructura de las seis aleaciones es muy similar como se observa en las imágenes a)-f). Las sucesivas adiciones de bismuto no provocan cambios significativos en las microestructuras. En todas ellas se observan las dendritas de fase $Al(fcc-\alpha)$ que precipitan al comienzo de la solidificación, y en los espacios interdendríticos, se sitúan las fases $Al(fcc-\alpha)$ y $Zn(hcp-\beta)$, que se forman a partir de la reacción eutectoide $Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta)$.

La única diferencia apreciable a destacar en las imágenes de la figura 123 es la imagen f), correspondiente a una muestra de la aleación 40%Zn-60%Al + 60% Bi. Ésta es la única muestra en la que se ha observado al microscopio óptico la microestructura característica del eutéctico ternario [30]. Por tanto en el resto de muestras, la adición de bismuto no es la suficiente como para que se pueda ver dicha microestructura.

En cuanto a los ensayos térmicos realizados a lo largo de todo este apartado y al igual que se ha hecho para la parte de caracterización microestructural mediante microscopia óptica, en las figuras 124 y 125 se muestra la representación conjunta de todas las gráficas obtenidas en la etapa de calentamiento para todas las aleaciones estudiadas en este apartado (40%Zn-60%Al + 10%, 20%, 30%, 40%, 50% y 60% de bismuto). El propósito de representarlas en conjunto es tener una visión global de todos los picos que se han obtenido en cada una de ellas y poder comparar los datos de temperatura obtenidos.

Figura 124. Análisis térmico diferencial de la etapa de calentamiento de las aleaciones base 40%Zn-60%Al.

Figura 125. Análisis térmico diferencial de la etapa de calentamiento de la aleación 40%Zn-60%Al + adiciones del 10%, 20%, 30%, 40%, 50% y 60%Bi.
En las gráficas de la figura 124 se muestran las curvas térmicas de la etapa de calentamiento de las aleaciones base y en ellas se ve un primer pico correspondiente a la transformación eutectoide binaria y un segundo pico correspondiente a la fusión de la aleación. En las figura 125 se representan todas las curvas térmicas obtenidas en la etapa de calentamiento de las aleaciones con adiciones de bismuto. En este caso se denota con la letra “E” mayúscula a los picos correspondientes a la reacción eutéctica ternaria, con la letra “U” a los picos de transformación eutectoide ternaria y con la “F” al pico correspondiente a la fusión. En la tabla 52 se muestran los valores de temperatura correspondientes a los inicios de las tres transformaciones que tienen lugar en estas aleaciones.

Tabla 52. Resumen de los valores de temperatura obtenidos en el del programa controlado de temperatura para la muestra 40%Zn-60%Al + Adiciones de Bismuto.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (ºC)(Fig.125)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fusión</td>
<td>Eutectoide</td>
<td>Eutético Ternario</td>
</tr>
<tr>
<td>Base</td>
<td>B 498,84 278,27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A 499,34 276,44</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+10%Bi</td>
<td>B 494,29 277,84</td>
<td>251,72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 483,68 276,14</td>
<td>251,43</td>
<td></td>
</tr>
<tr>
<td>+20%Bi</td>
<td>B 502,38 276,44</td>
<td>252,02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 504,40 275,99</td>
<td>215,66</td>
<td></td>
</tr>
<tr>
<td>+30%Bi</td>
<td>B 481,15 276,27</td>
<td>252,15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 494,29 275,85</td>
<td>251,77</td>
<td></td>
</tr>
<tr>
<td>+40%Bi</td>
<td>B 499,82 278,64</td>
<td>252,19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 494,26 275,90</td>
<td>251,29</td>
<td></td>
</tr>
<tr>
<td>+50%Bi</td>
<td>B 499,85 276,85</td>
<td>251,29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 499,85 276,01</td>
<td>251,62</td>
<td></td>
</tr>
<tr>
<td>+60%Bi</td>
<td>B 525,62 277,16</td>
<td>252,04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 511,47 276,37</td>
<td>253,03</td>
<td></td>
</tr>
</tbody>
</table>

Los valores de temperatura obtenidos para cada transformación en todas las aleaciones son semejantes, la única diferencia apreciable se encuentra en la aleación con 60% Bi, en al que la temperatura del eutéctico ternario es ligeramente superior a la del resto, 253,03°C y la temperatura del inicio de la fusión de la aleación es también es superior, 525,62°C para la muestra que ha sido enfriada al aire y 511,47°C para la muestra que ha sido enfriada en el interior del horno.
Una vez analizadas las temperaturas asociadas a los picos observados en el ensayo térmico, se analiza ahora el calor asociado a dichos picos, para ello, se realizan ensayos calorimétricos de todas las aleaciones con el fin de comparar los calores absorbidos por las muestras durante las reacciones eutéctica y eutectoide ternarias y durante el proceso de fusión.

En las figuras 126, 127 y 128 se representa las curvas de calor absorbido (etapa de calentamiento) frente a la temperatura, para las aleaciones base y para las aleaciones con adiciones de bismuto.

Figura 126. Curvas calorimétricas de la etapa de calentamiento para las aleaciones Base 40%Zn-60%Al.

Figura 127. Curvas calorimétricas de la etapa de calentamiento para las aleaciones 40%Zn-60%Al con contenidos de bismuto del 10%, 20% y 30%.

Figura 128. Curvas calorimétricas de la etapa de calentamiento para las aleaciones 40%Zn-60%Al con contenidos de bismuto del 40%, 50% y 60%.
Los picos obtenidos en las figuras 126, 127 y 128 son muy pequeños y están poco definidos, así que es posible que a la hora de integrarlos para obtener el calor asociado a los mismos salgan valores un poco dispares. En las gráficas de la figura 126, correspondiente con las aleaciones base sin adición de bismuto, se han obtenido dos picos, el primero corresponde a la reacción eutectoide binaria y el segundo a la fusión.

El primer pico que se obtiene en las gráficas de las figuras 127 y 128 es el correspondiente a la reacción eutéctica ternaria, el segundo pico corresponde con la reacción eutectoide ternaria y el último pico con la fusión de la aleación. Los datos de calor absorbido, obtenidos tras la integración de estos picos que aparecen en las curvas de calentamiento, se recogen en la tabla 53.

Tabla 53. Resumen de las datos de calor absorbido obtenidas en el del programa controlado de temperatura para la muestra 40%Zn-60%Al + Adiciones de Bismuto.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de calor absorbido en la etapa de calentamiento (fig. 125-128)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fusión</td>
</tr>
<tr>
<td></td>
<td>Calor Absorbido (J/g)</td>
</tr>
<tr>
<td>Base A</td>
<td>112,5</td>
</tr>
<tr>
<td>Base B</td>
<td>79,77</td>
</tr>
<tr>
<td>+10%Bi</td>
<td>91,51</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>80,94</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>105,7</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>63,64</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>79,58</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>61,41</td>
</tr>
</tbody>
</table>

Los datos correspondientes al calor absorbido en el proceso de fusión, no muestran una tendencia conforme aumenta el contenido de bismuto, lo único que se concluye es que la aleación con un 60% de bismuto, es la que menor calor absorbe en el proceso de fusión, 61,41J/g, y la aleación base que ha sido enfriada en el interior del horno, muestra A, es la aleación que mayor calor absorbe para fundirse, 112,5J/g.

Para los datos de calor absorbido en la transformación eutectoide ocurre lo mismo, a destacar que la aleación con el 60%Bi es la que menos calor absorbe en dicha transformación.
Por último, en los datos de calor absorbido en la transformación eutéctica ternaria se observa que para las aleaciones base no hay datos, puesto que no tienen bismuto, y por tanto no se produce dicha transformación y para las aleaciones con las diferentes adiciones de bismuto no se observa ninguna tendencia lo único que para la adición del 60%Bi el valor de calor absorbido que se obtiene, 9,85J/g es muy superior al resto.

Los datos de calores absorbidos por la aleación 60%Zn-40%Al + 60%Bi están relacionados con los resultados obtenidos en su caracterización mediante microscopía óptica y electrónica, donde se observaba en gran parte de la muestra la microestructura característica de la reacción eutéctica ternaria, mientras que en las otras aleaciones con las adiciones de un 10%, 20%, 30%, 40%, y 50% Bi, no se observaba dicha microestructura. Es por tanto esta al causa que esta aleación absorba mayor cantidad de calor en la reacción eutéctica ternaria, ya que dicha reacción se está produciendo en mayor cantidad de muestra que en las otras aleaciones, por tanto necesita absorber mayor cantidad de calor que las otras aleaciones.

Por último, en la gráfica de la figura 129 se representan las curvas termogravimétricas de la etapa de calentamiento y la de enfriamiento de los ensayos térmicos realizados a todas las muestras de las aleaciones que han sido enfriadas en el interior del horno, muestras A.

![Gráfica comparativa de los Análisis termogravimétricos para las aleaciones 40%Zn-60%Al + adiciones de Bismuto.](image_url)
Como se observa en la figura 129, todas las muestras sufren una pérdida de peso a partir de los 500°C, esto provoca que la composición de las muestras varíe y en la etapa de enfriamiento del ensayo térmico no se obtengan los picos a las mismas temperaturas que en la etapa de calentamiento del ensayo térmico.

En cuanto a la pérdida de peso sufrida por las muestras, se podría concluir y excluyendo la muestra con una adición del 20%Bi, que para las mayores adiciones de bismuto, la muestra se comporta de forma más estable frente a un ensayo térmico hasta la temperatura de 700°C. Las adiciones inferiores al 50% de bismuto no mejoran el comportamiento de la muestra frente al ensayo térmico hasta 700°C.

En general, para las aleaciones estudiadas en este apartado, 40%Zinc-60%Aluminio + adiciones de bismuto del 10%, 20%, 30%, 40%, 50% y 60% y teniendo en cuenta los resultados obtenidos en la caracterización microestructural, en la simulación termodinámica con Thermo-Calc [188] y en los ensayos térmicos, se concluyen los siguientes puntos.

- En relación a la caracterización microestructural realizada mediante microscopía óptica y electrónica, las aleaciones con adiciones del 10-50% de bismuto, presentan una microestructura similar, es decir dendritas primarias de fase $\text{Al}(\text{fcc-}\alpha)$ rodeadas de las fases $\text{Al}(\text{fcc-}\alpha)$, $\text{Zn}(\text{hcp-}\beta)$ y $\text{Bi}(\text{romb})$ que aparecen como resultado de la reacción eutéctica ternaria que tiene lugar en las zonas interdendríticas. La aleación con la adición del 60% de bismuto es la única de todas las aleaciones estudiada donde se ha observado la microestructura característica de la reacción eutéctica ternaria.

- En relación a los resultados obtenidos en los ensayos térmicos, se ha observado que para el inicio de la solidificación de la aleación por formación de la fase $\text{Al}(\text{fcc-}\alpha)$, los valores de temperatura experimentales que varían entre los 483°C-525°C, están 60°C por debajo de los que marca la simulación termodinámica con Thermo-Calc [188], que varía entre 549°C-576°C, por tanto, los datos teóricos no predicen los resultados experimentales.
En cuanto a la transformación eutectoide ternaria, $Al(fcc-\alpha')\leftrightarrow Zn(hcp-\beta) + Al(fcc-\alpha)$, la simulación termodinámica la marca a la temperatura de 277,63°C [188], Gröbner a 278,1°C [30] y la obtenida experimentalmente para las muestras tipo B es de 277,2°C y para las tipo A de 276,04°C un poco más baja, pero en este caso sí que la simulación termodinámica predice los resultado experimentales.

En cuanto a la transformación eutéctica ternaria, $L''\leftrightarrow Zn(hcp-\beta) + Al(fcc-\alpha) + Bi(romb)$ la simulación termodinámica la marca a la temperatura de 256,42°C, Gröbner a 253,9°C [30] y la que se obtiene experimentalmente en los ensayos térmicos es de 251-252°C, excepto para la aleación con un 60% de bismuto que se obtiene un valor más elevado que el resto. Para este caso hay una diferencia de 2-3°C entre los datos teóricos de Gröbner y el obtenido experimentalmente en el ensayo térmico con el teórico obtenido mediante Thermo-Calc [188], aun así los valores de temperatura son muy similares.

- En relación al tipo de enfriamiento que sufren las muestras, de forma lenta en el interior del horno (muestras A) y de forma rápida al aire (muestras B), se ha observado en los ensayos térmicos del tipo TGA que las muestras B son más estables térmicamente que las muestras A ya que, la pérdida de peso que sufren al llegar a la temperatura de 700°C es menor que las muestras tipo A.
5.7 Simulación termodinámica de la aleación base 85%Zn-15%Al

La siguiente composición estudiada es la correspondiente a un 85% de Zinc y un 15% de Aluminio. Al igual que se ha hecho para las aleaciones anteriores, se simula mediante el software Thermo-Calc [188] el diagrama de fases para esta composición.

En la figura 130 se representa el diagrama de fases binario para el sistema Zinc-Aluminio, y con una línea roja discontinua se marca la composición 85%Zn-15%Al. También se anotan con los números del 1-5 los puntos del diagrama donde tiene lugar un cambio significativo en las fases presentes.

Como se observa en el diagrama binario de la figura 130, la composición 85%Zn-15%Al se encuentra muy cercana a la composición eutéctica, está ligeramente a la izquierda, por tanto la aleación 85%Zn-15%Al tiene una composición hipoeutéctica.

En cuanto a los puntos del 1-5 marcados sobre la línea roja discontinua, se desarrollan en la figura 131.
La figura 131 corresponde con la línea roja discontinua marcada en la figura 130 y en ella se representa la evolución de la composición con la temperatura de las fases, Líquida, Al(fcc-α’), Al(fcc-α) y Zn(hcp-β) para la aleación 85% Zinc-15% Aluminio. Los números del 1-5 corresponden con los puntos marcados sobre la línea roja de la figura 130. En la tabla 54 se muestran los datos de temperatura y fracciones molares para los puntos comentados anteriormente.

Tabla 54. Resumen de los cambios principales que tienen lugar en la aleación base 85%Zn-15%Al

<table>
<thead>
<tr>
<th>Punto Interés</th>
<th>T(ºC)</th>
<th>Líquido</th>
<th>Al(fcc-α)</th>
<th>Al(fcc-α’)</th>
<th>Zn(hcp-β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>399,35</td>
<td>0,93</td>
<td>0</td>
<td>0,073</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>380,8</td>
<td>0</td>
<td>0</td>
<td>0,40</td>
<td>0,59</td>
</tr>
<tr>
<td>4</td>
<td>277,2</td>
<td>0</td>
<td>0</td>
<td>0,340</td>
<td>0,66</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0</td>
<td>0,15</td>
<td>0</td>
<td>0,85</td>
</tr>
</tbody>
</table>

En el punto 1 la aleación está toda en estado líquido, por tanto la fracción molar es de 1. A medida que la aleación se va enfriando se llega a la temperatura de líquidus, T=390ºC y comienza a precipitar la fase Al(fcc-α’). Al estar muy próximos al punto eutéctico, con un descenso de sólo 10ºC mas se llega al punto 3, donde se produce la transformación eutéctica: L ↔ Al(fcc-α’) + Zn(hcp-β) cuyas composiciones en fracción molar son de 0,4 para la fase Al(fcc-α’) y de 0,6 para la fase Zn(hcp-β).
Tras la reacción eutéctica y conforme disminuye la temperatura, las fracciones molares de las fases Zn(hcp-β) y Al(fcc-α′) aumentan ligeramente, hasta llegar al punto 4, en el cual tiene lugar la reacción eutectoide Al(fcc-α′) ⇔ Al(fcc-α) + Zn(hcp-β) a la temperatura de 277,2°C. Desde el punto 4 hasta llegar al 5, las fases presentes Al(fcc-α) y Zn(hcp-β) se mantienen prácticamente constantes, como se observa en las rectas de color rojo y morado de la figura 131.

Para la aleación de composición 85%Zinc-15%Aluminio, el programa de simulación termodinámica Thermo-Calc [188], predice que las dendritas primarias que se forman son de fase Al(fcc-α′), al igual que para la aleación de composición 40%Zn-60%Al. En la caracterización microestructural de la aleación se comprobará si estas dendritas son de fase Al(fcc-α′) o por el contrario son de fase Al(fcc-α).

5.8 Aleaciones 85%Zinc-15%Aluminio. Caracterización Material Base.

Teniendo en cuenta los datos recogidos de la bibliografía [30, 161] y los obtenidos mediante la simulación con Thermo-Calc [188], el enfriamiento de la aleación con la composición 85%Zinc-15%Aluminio hace que se atraviesen las zonas del diagrama de fases binario constituidas por las fases: [(L + Al(fcc-α′)], [Al(fcc-α) + Al(fcc-α′)] y [Al(fcc-α) + Zn(hcp-β)]. En la figura 132, se muestran las imágenes obtenidas mediante microscopía óptica de la microestructura de la aleación de composición 85%Zinc-15%Aluminio.

Figura 132. Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación base 85%Zn-15%Al, a) enfriada en el interior del horno y b) enfriada al aire.
A diferencia de las aleaciones de composición 20%Zn-80%Al y 40%Zn-60%Al discutidas en los apartados anteriores, para la aleación de composición 85%Zn-15%Al si se ha podido estudiar la diferencia entre la microestructura de la muestra que ha sido enfriada en el interior del horno, imagen b) de la figura 132, con la microestructura de la aleación que ha sido enfriada al aire, imagen a) de la figura 132.

La composición 85%Zn-15%Al se encuentra a la izquierda del punto eutéctico, por tanto, el comienzo de la solidificación de la aleación se produce por formación de dendritas de fase $\text{Al}(\text{fcc-}\alpha')$, y cuando la aleación ha solidificado por completo, alrededor de estas dendritas aparece el agregado eutéctico formado por las fases $[\text{Al}(\text{fcc-}\alpha) + \text{Zn}(\text{hcp-}\beta)]$ [192].

La muestra tipo B de la figura 132 muestra una microestructura formada por un gran número de dendritas y de tamaño más pequeño que las dendritas de la microestructura de la muestra tipo A, que poseen un tamaño mucho mayor y además, se aprecia de forma más clara el agregado eutéctico constituido por las fases $[\text{Al}(\text{fcc-}\alpha) + \text{Zn}(\text{hcp-}\beta)]$. Esta diferencia en la microestructura es debida a que el enfriamiento lento que sufre la muestra tipo A en el interior del horno, permite que las dendritas que inicialmente precipitan, puedan desarrollarse y crecer más que las dendritas formadas en la muestra tipo B. Con el fin de observar mejor la microestructura en el interior de las dendritas de fase $\text{Al}(\text{fcc-}\alpha')$, observadas en las imágenes a) y b) de la figura 132, se obtiene mediante microscopía óptica una imagen a 1000 aumentos y otra a mediante SEM, éstas se muestran en la figura 133.

![Figura 133. a) Microestructura obtenida mediante Microscopía óptica a 1000 aumentos de la aleación 85%Zn-15%Al enfriada en el interior del horno; b) Detalle de la microestructura obtenida mediante SEM de la aleación 85%Zn-15%Al% en el interior del horno.](image-url)
En la figura 133a) se observa en el interior de la dendrita primaria de fase $Al(fcc-\alpha')$, unas laminillas alternas de color claro y oscuro. Esto demuestra los datos obtenidos mediante la simulación termodinámica con Thermo-Calc [188], que predicen que la fase que inicialmente precipita es la $Al(fcc-\alpha')$, y no la fase $Al(fcc-\alpha)$, por tanto, esas láminas corresponden con las fases $Al(fcc-\alpha)$ y $Zn(hcp-\beta)$ obtenidas tras la transformación eutectoide. La secuencia del proceso de enfriamiento que da lugar a la microestructura de las imágenes de las figuras 132 y 133 es la siguiente:

1. Solidificación por formación de las dendritas primarias de fase $Al(fcc-\alpha')$
2. Reacción eutéctica: Líquido $\leftrightarrow Al(fcc-\alpha') + Zn(hcp-\beta)$
3. Reacción eutectoide: $Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta)$, esta transformación tiene lugar en el interior de las dendritas primarias de fase $Al(fcc-\alpha')$.

Una vez conocida la microestructura de la aleación base 85%Zinc-15%Aluminio, se procede a la realización de los ensayos térmicos correspondientes, con el fin ver los picos correspondientes a los cambios de fases que tienen lugar en dicha aleación. En las figuras 134 y 135, se muestran la etapa de calentamiento y la de enfriamiento del ensayo térmico realizado a una muestra de la aleación 85%Zinc-15%Aluminio.

![Figura 134. Análisis térmico diferencial de la etapa de calentamiento de la aleación base 85%Zn-15%Al.](image1)

![Figura 135. Análisis térmico diferencial de la etapa de enfriamiento de la aleación base 85%Zn-15%Al.](image2)

Todos los datos de temperatura correspondientes a los picos aparecidos en las etapas de calentamiento y enfriamiento se recogen en las tablas 55 y 56.
Resultados y Discusión

Analizando los resultados obtenidos en la etapa de calentamiento del ensayo térmico de la aleación 85%Zn-15%Al y que se muestra en la figura 134, se observan dos picos bien diferenciados, el primero corresponde a la transformación eutectoide, la cual tiene lugar en torno a los 277ºC, y el segundo correspondiente con la transformación eutéctica a 381ºC. En la parte final de las curvas de calentamiento aparece un escalón de subida, es decir se produce otra absorción de energía, que corresponde con la fusión de la mezcla. Este proceso está unido completamente al pico anterior correspondiente a la reacción eutéctica binaria, donde a partir de los 381ºC ya comienza a fundirse la aleación, por eso aparecen pegados ambas transiciones.

La temperatura correspondiente al pico máximo de la transformación eutéctica es la que se aproxima mejor al valor teórico encontrado en bibliografía de 381ºC [30, 31, 161]. Y con respecto a la transformación eutectoide, la temperatura de inicio del pico es la que se ajusta mejor al valor teórico de la bibliografía de 277,2ºC [30, 31, 161].

En cuanto a los datos experimentales obtenidos en la rampa de calentamiento para la muestra tipo A y tipo B que se recogen en la tabla 55 no se aprecian diferencias, por tanto el diferente proceso de enfriamiento entre ambas muestra no influye en los valores obtenidos para las temperaturas correspondientes a cada pico. El estudio térmico de los materiales base en la etapa de enfriamiento que se muestra en la figura 135, revela tres picos bien diferenciados.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Fusión</th>
<th>R. Eutéctica</th>
<th>R. Eutectoide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio (ºC)</td>
<td>Máximo (ºC)</td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>A</td>
<td>402,68</td>
<td>437,93</td>
<td>378,52</td>
</tr>
<tr>
<td>B</td>
<td>401,77</td>
<td>438,29</td>
<td>378,26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Solidificación</th>
<th>R. Eutéctica</th>
<th>R. Eutectoide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio (ºC)</td>
<td>Máximo (ºC)</td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>A</td>
<td>436,39</td>
<td>428,13</td>
<td>372,42</td>
</tr>
<tr>
<td>B</td>
<td>437,46</td>
<td>429,05</td>
<td>371,92</td>
</tr>
</tbody>
</table>

Tabla 55 y 56. Resumen de los datos de temperatura obtenidos en el ensayo térmico para la muestra 85%Zn-15%Al, correspondiente a la aleación base.
Mirando las curvas de derecha a izquierda, al ser de enfriamiento, el primer pico corresponde con el inicio de la solidificación de la aleación por formación de la fase $Al(fcc-\alpha')$. A diferencia del pico obtenido en la etapa de calentamiento para esta transición, la forma del pico en la etapa de enfriamiento va a permitir integrarlo y obtener un valor de calor cedido por el sistema. El segundo pico corresponde con la transformación eutéctica y el tercero con la transformación eutectoide.

En cuanto a los datos experimentales obtenidos en la rampa de enfriamiento para la muestra tipo A y tipo B y recogidos en la tabla 56, no se aprecian diferencias destacables.

Comparando los datos de temperatura obtenidos en la etapa de calentamiento con los obtenidos en la etapa de enfriamiento, difieren en unos $30^\circ C$ para la transformación eutectoide, entre 6 y 7 grados para la eutéctica y unos 10 grados para la zona ($Líquido + Al(fcc-\alpha')$). Esto es debido a la diferencia entre la velocidad de calentamiento, que es fija y constante y la velocidad de enfriamiento que no lo es, puesto que el calorímetro usado no posee un sistema de refrigeración que permita enfriar a una velocidad constante.

Para comparar los resultados experimentales obtenidos en los ensayos térmicos, con los teóricos obtenidos con la simulación termodinámica y los de Gröbner y Murray de la bibliografía [30, 31, 161, 193], se representan todos los datos de temperatura para cada transición sobre el mismo diagrama de fases de la figura 136.

Figura 136. Diagrama de fases del sistema Zinc-Aluminio, obtenido mediante simulación termodinámica con el software Thermo-Calc [188].
Analizando los datos de temperatura de la figura 136 se observa que:

- Experimentalmente el inicio de la solidificación de la aleación 85%Zn-15%Al por formación de la fase Al\textit{fcc-}\alpha' comienza a los 400°C con la simulación con Thermo-Calc [188] y con Gröbner [30, 31] y Murray [161] a los 450°C, por tanto, los datos obtenidos experimentalmente mediante ensayos térmicos se ajustan a los teóricos. El único dato que se diferencia del resto es el Murray, cuya temperatura de inicio de fusión es muy superior al resto de los otros datos comentados y se encuentra en torno a los 450°C.

- En cuanto a la transformación eutética y eutectoide, los valores de temperatura obtenidos experimentalmente en el presente trabajo coinciden tanto, con los obtenidos teóricamente con Thermo-Calc [188] como con los obtenidos por los autores Gröbner [30, 31] y Murray [161, 193]. La temperatura de la reacción eutética obtenida para los cuatro es de 381°C y para la reacción eutectoide es de 277°C.

5.9 Simulación termodinámica de la aleación 85%Zn-15%Al + Adiciones de Bi.

Una vez caracterizada la aleación base de composición 85%Zn-15%Al, se estudia el efecto de las adiciones de bismuto en la microestructura, siguiendo el mismo esquema que para las aleaciones base anteriormente discutidas en apartados previos. En la tabla 57, se muestran todas las composiciones de las aleaciones ternarias Zn-Al-Bi que se van a estudiar en este apartado. Partiendo de la aleación 85%Zn-15%Al, se van adicionando cantidades de bismuto a la mezcla binaria para formar la aleación ternaria. Las cantidades de bismuto que se van a añadir son: 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 30%, 40%, 50% y 60%.
Como se observa en la tabla 57, se van a estudiar 14 composiciones de la aleación ternaria Zn-Al-Bi. Al igual que se ha hecho para las aleaciones discutidas en los apartados anteriores, el estudio de estas 14 aleaciones comienza primeramente realizando la simulación termodinámica a temperaturas intermedias entre las temperaturas de las reacciones monotéctica, eutectoide y eutéctica ternaria, con el fin de observar las fases que están presentes a esas temperaturas.

En la figura 137, se representa el diagrama ternario Zn-Al-Bi correspondiente a la isoterma de 379°C.

Tabla 57. Composiciones de las aleaciones ternarias Zn-Al-Bi que se van a estudiar en este apartado.

<table>
<thead>
<tr>
<th>%Peso Zn</th>
<th>%Peso Al</th>
<th>%Peso Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>83,3</td>
<td>14,7</td>
<td>2,0</td>
</tr>
<tr>
<td>81,7</td>
<td>14,4</td>
<td>3,8</td>
</tr>
<tr>
<td>80,2</td>
<td>14,2</td>
<td>5,7</td>
</tr>
<tr>
<td>78,7</td>
<td>13,9</td>
<td>7,4</td>
</tr>
<tr>
<td>77,3</td>
<td>13,6</td>
<td>9,1</td>
</tr>
<tr>
<td>75,9</td>
<td>13,4</td>
<td>10,7</td>
</tr>
<tr>
<td>74,6</td>
<td>13,2</td>
<td>12,3</td>
</tr>
<tr>
<td>73,3</td>
<td>12,9</td>
<td>13,8</td>
</tr>
<tr>
<td>72,0</td>
<td>12,7</td>
<td>15,3</td>
</tr>
<tr>
<td>70,8</td>
<td>12,5</td>
<td>16,7</td>
</tr>
<tr>
<td>65,4</td>
<td>11,5</td>
<td>23,1</td>
</tr>
<tr>
<td>60,7</td>
<td>10,7</td>
<td>28,6</td>
</tr>
<tr>
<td>56,7</td>
<td>10,0</td>
<td>33,3</td>
</tr>
<tr>
<td>53,1</td>
<td>9,4</td>
<td>37,5</td>
</tr>
</tbody>
</table>

Figura 137. Isoterma a 379°C, justo por encima de la transformación Monotéctica [188].
La línea morada discontinua que aparece en el diagrama de la figura 137, representa el conjunto de las 14 aleaciones cuyas composiciones se encuentran comprendidas en dicha línea. A la temperatura de 379ºC justo antes que se produzca la reacción monotéctica ternaria $L' \leftrightarrow L'' + Al(fcc-\alpha') + Zn(hcp-\beta)$, 13 de las 14 aleaciones se encuentran en la región del diagrama donde coexisten las fases líquidas L'' y L' y la fase $Al(fcc-\alpha')$, ya que la aleación con la composición 83,3%Zn-14,7%Al-2%Bi se sitúa en la zona del diagrama donde se encuentran las fases L' y $Al(fcc-\alpha')$. A esta temperatura las diferentes aleaciones han comenzado a solidificar por medio de la formación de la fase $Al(fcc-\alpha')$.

En la figura 138 se representa la isoterma a 300ºC del diagrama ternario Zn-Al-Bi. Esta temperatura es intermedia entre la temperatura de 370ºC correspondiente a la reacción monotéctica ternaria y la temperatura de 278ºC de la eutectoide ternaria [30, 31].

![Diagrama ternario Zn-Al-Bi a 300ºC](THERMO-CALC (2011.03.07:09.21) :ZN-AL-BI at T=573.15 K DATABASE:SSOL2 T=573.15, P=1E5, N=1;)

Figura 138. Isoterm a a 300ºC, entre la transformación Monotéctica y la Eutectoide [188].

Como se observa en el diagrama ternario de la figura 138, a la temperatura de 300ºC, ya se ha formado la fase $Zn(hcp-\beta)$. A 300ºC en todas las aleaciones han precipitado las fases $Al(fcc-\alpha')$ y $Zn(hcp-\beta)$.
En el diagrama ternario de la figura 139, se muestra la isoterma a la temperatura de 270°C, intermedia entre la reacción eutectoide ternaria \(Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) \) y la reacción eutéctica ternaria \(L'' \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) + Bi(romb) \).

La isoterma a la temperatura de 270°C, muestra que una vez transcurrida la reacción eutectoide ternaria, las fases que forman parte de las 14 aleaciones en estudio son la fase líquida denotada como \(L'' \) y las fases sólidas \(Al(fcc-\alpha) \) y \(Zn(hcp-\beta) \).

Por último y para terminar con las simulaciones de los diagramas ternarios para el grupo de aleaciones 85%Zn-15%Al + adiciones de Bi, en la figura 140 se muestra la isoterma a la temperatura de 240°C, una temperatura inferior a la de la reacción eutéctica ternaria \(L'' \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) + Bi(romb) \), que en bibliografía es de 253,9°C [30, 31].

Figura 139. Isoterma a 270°C, entre la transformación Eutectoide y Eutéctica [188].

Figura 140. Isoterma a 240°C después de la transformación Eutéctica [188].
La isoterma a la temperatura de 240°C del diagrama ternario de la figura 140, muestra que la aleación ha solidificado y enfriado formando las fases $\text{Al(fcc-} \alpha \text{)}$, $\text{Zn(hcp-} \beta \text{)}$ y Bi(romb) ya que han tenido lugar ya las transformaciones monotéctica, eutectoide y eutéctica ternarias.

En las gráficas de la figuras 141, y 142 se muestran la evolución en la composición de las fases L'', L', $\text{Al(fcc-} \alpha \text{)}$, $\text{Zn(hcp-} \beta \text{)}$, $\text{Al(fcc-} \alpha' \text{)}$ y Bi(romb) con la temperatura. Estas fases forman parte de las aleaciones 85%Zn-15%Al + Adiciones Bi.

Figura 141. Obtención mediante Thermo-Calc [188] de la evolución de la formación de las fases para la aleación 85%Zn-15%Al con contenidos crecientes de bismuto.
Figura 142. Obtención mediante Thermo-Calc [188] de la evolución de la formación de las fases para la aleación 85%Zn-15%Al con contenidos crecientes de bismuto.
Resultados y Discusión

Para las adiciones de un 2% y 4% de bismuto se ha realizado una ampliación de las gráficas para poder ver más claro la evolución de las fases entre los 200-400ºC.

En las gráficas de las figuras 141 y 142 se observa del mismo modo que para las aleaciones anteriores de composiciones 20%Zn-80%Al y 40%Zn-60%Al, que al añadir bismuto a la aleación base, aparecen dos líquidos, uno denotado como L’ (línea roja en las gráficas), rico en zinc y aluminio y el otro líquido como L” (línea azul), mayoritario en bismuto. Y al igual que para las aleaciones anteriores, ambos líquidos siguen caminos diferentes de solidificación.

Para las aleaciones 85%Zn-15%Al + (2%, 4%, 6%, 8% 10%, 12%, 14% y 16%Bi) la composición de la fase líquida L’ es mayoritaria frente a la de L”. A partir de la adición de un 40%Bi, la fracción molar de la fase líquida L” aumenta hasta llegar a ser mayoritaria frente a la de L’, lógico, porque la cantidad de bismuto ha aumentado también.

Para una temperatura cercana a los 700ºC todas las gráficas muestran una composición inicial de la aleación formada únicamente por la fase líquida, por tanto, la fracción molar es 1. Esta composición se mantiene constante hasta la aparición de la segunda fase líquida, L” que tiene lugar a la temperatura de 370ºC para la aleación 85%Zn-15%Al + 2%Bi. Conforme aumenta el contenido en bismuto, esta segunda fase líquida aparece a mayores temperaturas, así para la aleación de composición 85%Zn-15%Al + 60%Bi esta fase aparece a los 508ºC.
Conforme disminuye la temperatura la fracción molar de \(L' \) disminuye y la de \(L'' \) aumenta. Esta tendencia se mantiene hasta el inicio de la solidificación de la aleación por formación de la fase \(Al(fcc-\alpha') \), marcada con la línea de color morado.

La temperatura del inicio de la solidificación es de 380°C y se mantiene prácticamente constante para todo el conjunto de las aleaciones, varía sólo un par de grados para las mayores adiciones de bismuto. A la temperatura de 376°C en la bibliografía [30, 31] está descrita la transformación monotéctica \(L' \leftrightarrow L'' + Al(fcc-\alpha') + Zn(hcp-\beta) \), pero con la simulación termodinámica se obtiene a 370°C, seis grados por debajo, este hecho se observa para todas las simulaciones realizadas. Las fases \(Al(fcc-\alpha') \) y \(Zn(hcp-\beta) \) que aparecen como resultado de esta transformación van a solidificar en los huecos interdendríticos de la fase inicial \(Al(fcc-\alpha') \) y el líquido \(L'' \) va a quedar atrapado entre dicha microestructura. En la tabla 58 se muestran las composiciones de las fases que participan en la transformación monotéctica.

\[\text{Tabla 58. Variación de la composición de las fases durante la transformación monotéctica.} \]

<table>
<thead>
<tr>
<th>Aleación</th>
<th>(L')</th>
<th>(L'')</th>
<th>(Al(fcc-\alpha'))</th>
<th>(Zn(hcp-\beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10%Bi</td>
<td>0,79</td>
<td>0,13</td>
<td>0,35</td>
<td>0,51</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>0,68</td>
<td>0,23</td>
<td>0,31</td>
<td>0,44</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>0,58</td>
<td>0,33</td>
<td>0,28</td>
<td>0,38</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>0,55</td>
<td>0,41</td>
<td>0,5</td>
<td>0,32</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>0,43</td>
<td>0,48</td>
<td>0,23</td>
<td>0,28</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>0,37</td>
<td>0,54</td>
<td>0,21</td>
<td>0,24</td>
</tr>
</tbody>
</table>

La fracción molar de la fase líquida \(L' \) que se muestra en la tabla 58 es la última que aparece justo antes de producirse la transformación monotéctica y las del aluminio y el zinc las de justo después de la transformación. Como se observa en la tabla 58, conforme aumenta el bismuto añadido, lógicamente aumenta la fracción molar de \(L'' \), disminuye la de \(L' \) y las de \(Al(fcc-\alpha') \) y \(Zn(hcp-\beta) \) también disminuyen. Y tras producirse la transformación monotéctica, el espacio interdendrítico que deja la fase primaria \(Al(fcc-\alpha') \) va estar compuesto mayoritariamente por el líquido \(L'' \).

Pasada la transformación monotéctica ternaria, conviven las dendritas primarias de la fase \(Al(fcc-\alpha') \) y rodeándolas el agregado monotéctico \([Al(fcc-\alpha') + Zn(hcp-\beta)] \) y la fase líquida \(L'' \).
Conforme disminuye la temperatura, la fracción molar de la fase líquida L'' comienza a disminuir, coincidiendo con un aumento en la fracción molar de la fase $Zn(hcp-β)$, debido a que en el líquido L'' está empezando a solidificar dicha fase.

Esta tendencia se mantiene hasta llegar a la temperatura de la transformación eutectoide ternaria $Al(fcc-α') ↔ Al(fcc-α) + Zn(hcp-β)$ a $278,63^°C$.

En la tabla 59 se muestran los valores de composición de las fases presentes en la transformación eutectoide además de la del líquido L''. Dicha transformación tiene lugar, tanto en las dendritas primarias de fase $Al(fcc-α')$ que empiezan a formarse antes de la transformación monotéctica, como en su estructura interdendrítica comentada anteriormente.

Tabla 59. Variación de la composición de las fases durante la transformación eutectoide ternaria

<table>
<thead>
<tr>
<th>Aleación</th>
<th>$FRACCIONES MOLARES$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Al(fcc-α')$</td>
</tr>
<tr>
<td>+10%Bi</td>
<td>0,31</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>0,28</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>0,25</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>0,23</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>0,22</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>0,20</td>
</tr>
</tbody>
</table>

Los datos de fracciones molares de la tabla 59 reflejan que, a medida que la adición de bismuto es mayor, la composición de las fases $Al(fcc-α)$ y $Zn(hcp-β)$ disminuye debido a que se va favoreciendo la transformación eutéctica ternaria. La fracción molar de la fase $Al(fcc-α)$ cada vez es menor conforme aumenta la adición de bismuto, siendo el zinc y el bismuto contenido en L'' las fases mayoritarias tras la transformación eutectoide.

Pasada la reacción eutectoide ternaria y si continua disminuyendo la temperatura se llega a la transformación eutéctica ternaria, que tiene lugar a una temperatura de $256,42^°C$: $L'' ↔ Bi(romb) + Al(fcc-α) + Zn(hcp-β)$ y todo el líquido L'' que quedaba termina de solidificar y aparece la fase romboédrica del bismuto.

En la tabla 60, se muestran las fracciones molares de las fases que participan en la reacción eutéctica ternaria.
Resultados y Discusión

Tabla 60. Variación de la composición de las fases durante la transformación eutéctica ternaria

<table>
<thead>
<tr>
<th>Aleación</th>
<th>L''</th>
<th>Bi(romb)</th>
<th>Zn(hcp-β)</th>
<th>Al(fcc-α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10%Bi</td>
<td>0,098</td>
<td>0,090</td>
<td>0,76</td>
<td>0,14</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>0,18</td>
<td>0,16</td>
<td>0,70</td>
<td>0,13</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>0,25</td>
<td>0,23</td>
<td>0,63</td>
<td>0,12</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>0,31</td>
<td>0,28</td>
<td>0,60</td>
<td>0,11</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>0,36</td>
<td>0,33</td>
<td>0,56</td>
<td>0,10</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>0,40</td>
<td>0,37</td>
<td>0,49</td>
<td>0,09</td>
</tr>
</tbody>
</table>

Los datos de fracciones molares de la tabla 60 muestran que las fases mayoritarias presentes tras la reacción eutéctica ternaria van a ser la del bismuto y la del zinc, el aluminio se encuentra preferentemente formando parte de las dendritas primarias de solidificación. Tras la reacción eutéctica ternaria, ya no se producen más cambios en las composiciones de las fases Bi(romb), Al(fcc-α) y Zn(hcp-β).

5.9.1 85%Zn-15%Al + 2%Bi, caracterización microestructural

Una vez realizadas las simulaciones termodinámicas para la aleación base 85%Zn-15%Al y para las aleaciones con adiciones de bismuto, se pasa a caracterizar la microestructura de cada una de ellas. La primera aleación que se caracteriza es la de adición de un 2% de bismuto. Las imágenes obtenidas mediante microscopía óptica de esta aleación, se muestran en la figura 143.

Figura 143. Microestructura obtenida mediante Microscopía óptica a 500 aumentos de la aleación 85%Zn-15%Al + 2%Bi, a) enfriada en el interior del horno y b) enfriada al aire.

En las imágenes de la figura 143 se observan las dendritas primarias de fase Al(fcc-α') de color más oscuro rodeadas del agregado $[\text{Al(fcc-α') + Zn(hcp-β)}]$ obtenido tras la transformación monotéctica ternaria.
A continuación se caracteriza la aleación 85%Zn-15%Al + 2%Bi mediante SEM, se obtienen imágenes de la microestructura y se realiza análisis semicuantitativos en las diferentes zonas que se observan en la microestructura, con el fin de ver la composición de las diferentes fases. En la figura 144 se muestran las imágenes obtenidas con el SEM.

![Imagen de microestructura](image)

Figura 144. Microestructura obtenida mediante Microscopía Electrónica de Barrido de la aleación 85%Zn-15%Al + 2%Bi a 1000 aumentos, a) muestra tipo B; b) muestra tipo A.

En la imagen a) de la figura 144 se observan las dendritas primarias de fase $\text{Al}(\text{fcc-}\alpha')$ rodeadas del agregado monotéctico compuesto por las fases $\text{Al}(\text{fcc-}\alpha')$ y $\text{Zn}(\text{hcp-}\beta)$. Además, se observan grandes partículas blancas de la fase líquida L'' solidificada situadas en los bordes y en el interior de la dendrita de fase $\text{Al}(\text{fcc-}\alpha')$ y adheridas a ellas, se encuentra una zonas negras que corresponde con la fase $\text{Al}(\text{fcc-}\alpha)$ de la matriz monotéctica.

Sobre la imagen b) de la figura 144 se colocan los números 1 y 2 en los lugares donde se ha realizado un análisis puntual. El análisis realizado en el punto 1, corresponde con la última fase que solidifica en la aleación y que da lugar a la reacción eutéctica ternaria, $L'' \leftrightarrow \text{Bi(romb)} + \text{Al(fcc-}\alpha) + \text{Zn(hcp-}\beta)$. El análisis realizado en la zona 2 corresponde con la fase de color oscuro que aparece en la zona interdendrítica tras la reacción monotéctica y posterior eutectoide ternaria. Los resultados de ambos análisis se muestran en la tabla 61.
Los resultados del análisis en el punto 1, muestran que las zonas claras denotadas como \(L'' \rightarrow Bi \) están compuestas mayoritariamente por en bismuto 95,8% que disuelve un 4,1% de zinc. El que no se haya detectado aluminio en la fase \(L'' \) quiere decir que la reacción eutéctica ternaria no ha tenido aun lugar y es que ni en la caracterización microestructural con el óptico ni con el SEM, se ha observado dicha microestructura.

Los resultados obtenidos en el análisis 2 muestran a la fase del aluminio mayoritaria, 64,06% y el bismuto no aparece, esto es debido a que el bismuto se localiza en su totalidad en la fase clara comentada anteriormente, y solo participa en la reacción eutéctica ternaria, por tanto la zona negra analizada en el punto 2 corresponde con la fase \(Al(fcc-\alpha) \) que se obtiene tras la reacción eutectoide \(Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) \).

Por último, se realizó un análisis a la matriz eutectoide del interior de la dendrita primaria de fase \(Al(fcc-\alpha') \), compuesta por láminas negras y blancas. En la figura 145, se muestra la imagen obtenida de SEM de la muestra tipo A de la aleación 85%Zn-15%Al + 2%Bi.

Tabla 61. Microanálisis semi-cuantitativo por EDX (Energy-dispersive X-ray) para la aleación 85%Zn-15%Al + 2%Bi en los puntos 1 y 2 de la imagen b) de la figura 144.

<table>
<thead>
<tr>
<th>Punto de análisis</th>
<th>Elementos</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zn</td>
<td>Al</td>
</tr>
<tr>
<td></td>
<td>Peso %</td>
<td>Atómico%</td>
</tr>
<tr>
<td>1 Fase líquida (L'')</td>
<td>4,10</td>
<td>12,02</td>
</tr>
<tr>
<td>2 Fase (Al(fcc-\alpha))</td>
<td>35,94</td>
<td>18,80</td>
</tr>
</tbody>
</table>

Figura 145. Microestructura obtenida mediante Microscopía Electrónica de Barrido de la aleación 85%Zn-15%Al + 2%Bi de la muestra A.
En la figura 145 se observa una dendrita primaria de fase \(Al(\text{fcc-}\alpha')\) y en su interior se observa a su vez dos fases, una de color negro y otra de color claro. Esta microestructura significa que en el interior de la dendrita de fase \(Al(\text{fcc-}\alpha')\) ha tenido lugar la reacción eutectoide \(Al(\text{fcc-}\alpha') \leftrightarrow Al(\text{fcc-}\alpha') + Zn(hcp-\beta)\). Los recuadros con los números 1 y 2 muestran los análisis realizados en la fase negra y en la fase clara del interior de la dendrita. Los resultados de estos análisis se muestran en la tabla 62.

Tabla 62. Microanálisis semi-cuantitativo por EDX (Energy-dispersive X-ray) para la aleación 85\%Zn-15\%Al + 2\%Bi en los puntos 1 y 2 de la imagen de la figura 145.

<table>
<thead>
<tr>
<th>Punto de análisis</th>
<th>Elementos</th>
<th>Peso %</th>
<th>Atómico%</th>
<th>Peso %</th>
<th>Atómico%</th>
<th>Peso %</th>
<th>Atómico%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fase Al(\text{fcc-}\alpha)</td>
<td>Zn</td>
<td>45,17</td>
<td>25,92</td>
<td>53,05</td>
<td>73,76</td>
<td>1,78</td>
<td>0,32</td>
<td>100</td>
</tr>
<tr>
<td>2 Fase Zn(hcp-\beta)</td>
<td>Al</td>
<td>99,49</td>
<td>98,78</td>
<td>0,51</td>
<td>1,22</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

De acuerdo con los datos obtenidos mediante la simulación con Thermo-Calc [188] para la aleación de composición 85\%Zn15\%Al +2\%Bi y que se muestran en las gráficas de la figura 140, tras producirse la reacción eutectoide ternaria, la fracción molar de la fase \(Al(\text{fcc-}\alpha)\) es de 0,15 y la de la fase \(Zn(hcp-\beta)\) es de 0,82, el resto hasta 1 es de bismuto. Ambas composiciones varían muy poco desde la temperatura de la reacción eutectoide hasta los 100\°C, en concreto 0,14 para el aluminio y 0,83 para el zinc.

La composición obtenida de la fase \(Zn(hcp-\beta)\) en el punto de análisis 2 indica que esta mayoritariamente formada por Zinc 99\%, y el análisis 1 realizado en la fase \(Al(\text{fcc-}\alpha)\), muestra que esta fase está compuesta por un 53\% de aluminio, un 45\% de zinc y un 1,78\% de bismuto. El 2\% de bismuto que lleva la aleación, además de encontrarse en las zonas blancas observadas en las figuras 144 y 145, se encuentra también formando parte de la fase \(Al(\text{fcc-}\alpha)\) del interior de las dendritas que precipitan al comienzo de la solidificación. La microestructura característica de la reacción eutéctica ternaria \(L'' \leftrightarrow Bi(\text{romb}) + Al(\text{fcc-}\alpha) + Zn(hcp-\beta)\) [30], no se ha observado con el microscopio óptico ni con el SEM.
Resultados y Discusión

Una vez realizados los estudios mediante microscopía óptica y SEM, se pasa a los estudios de análisis térmico, mediante los cuales se verá si la reacción eutéctica ternaria tiene lugar o no para esta aleación de composición 85%Zn15%Al +2%Bi.

En las figuras 146 y 147 se representan las curvas tipo DTA para la etapa de calentamiento y de enfriamiento de una muestra de la aleación de composición 85%Zn15%Al +2%Bi sometida a un programa de temperatura controlado. El esquema de colores es el mismo que el utilizado para las aleaciones anteriores, rojo y verde para las aleaciones base y azul y negro para las aleaciones que tienen una adición de bismuto.

En las tablas 63 y 64, se recogen las temperaturas correspondientes a los picos observados en las figuras 146 y 147.

Tabla 63. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA, para la muestra 85%Zn-15%Al + 2%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 146)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,55</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
</tr>
<tr>
<td>Muestra A</td>
<td>-</td>
</tr>
<tr>
<td>Muestra B</td>
<td>-</td>
</tr>
</tbody>
</table>

Figura 146. Análisis térmico diferencial de la etapa de calentamiento de la aleación 85%Zn-15%Al + 2%Bi.

Figura 147. Análisistérmico diferencial de la etapa de enfriamiento de la aleación 85%Zn-15%Al + 2%Bi.
Las gráficas azul y negra que se obtienen en la etapa de calentamiento correspondientes con la figura 146 muestran dos picos bien diferenciados y un tercero muy ancho y poco definido. El primero corresponde con la transformación eutectoide ternaria $Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta)$ y de acuerdo con la bibliografía [30] se ve que sí que es el eutectoide ternario y no el eutectoide binario, porque en el binario Zinc-Aluminio esta transformación tiene lugar a 277,2°C muy cercano a lo que se obtiene en la tabla 63 para los materiales base y el eutectoide ternario tiene lugar a la temperatura de 278,1°C, cercano a los datos que se obtienen en dicha tabla para el sistema ternario zinc-aluminio-bismuto.

El segundo pico que se observa en las curvas negra y azul de la figura 146 es el correspondiente a la transformación monotéctica ternaria: $L' \leftrightarrow L'' + Al(fcc-\alpha') + Zn(hcp-\beta)$. Como se puede observar en la tabla 63, las temperaturas de la reacción eutéctica binaria están en torno a los 378°C, en cambio las temperaturas del monotéctico ternario están en torno a los 375°C, hay una diferencia de 3°C, por tanto no cabe duda que el pico que aparece es el correspondiente a la transformación monotéctica ternaria y no al eutéctico binario.

Por último, en la etapa de calentamiento de la figura 146 se observa un tercer pico que no llega a definirse por completo. Este pico corresponde con el inicio de la fusión de la aleación 85%Zn15%Al +2%Bi y se encuentra completamente solapado con el final de la reacción monotéctica ternaria. La integración de este pico permite conocer la temperatura de inicio del proceso de fusión que para las aleaciones base, curvas roja y verde esta temperatura es de 402°C-403°C y para las aleaciones con adición de bismuto es de 400°C-389°C, ligeramente inferior.

Tabla 64. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico DTA, para la muestra 85%Zn-15%Al + 2%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 147)</th>
<th>Solidificación</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>438,08</td>
<td>372,35</td>
<td>372,35</td>
<td>366,70</td>
<td>240,62</td>
</tr>
<tr>
<td>Base B</td>
<td>439</td>
<td>371,83</td>
<td>371,83</td>
<td>366,61</td>
<td>239,41</td>
</tr>
<tr>
<td>Muestra A</td>
<td>435,55</td>
<td>364,65</td>
<td>-</td>
<td>-</td>
<td>250,79</td>
</tr>
<tr>
<td>Muestra B</td>
<td>434,29</td>
<td>366,23</td>
<td>-</td>
<td>-</td>
<td>251,80</td>
</tr>
</tbody>
</table>
Comparando los resultados obtenidos experimentalmente con los obtenidos mediante la simulación termodinámica con Thermo-Calc [188], la temperatura de inicio de la fusión de la aleación debería estar entorno a los 386°C, y experimentalmente se obtiene en torno a los 400°C excepto para la muestra tipo B. La transformación monotéctica tiene lugar a los 370°C y experimentalmente se obtiene a 375°C, una temperatura más cercana a la de la bibliografía 376°C [30]. La reacción eutectoide según la simulación termodinámica debería darse a 277,63°C [188] y experimentalmente se ha obtenido a esa misma temperatura. Y por último la transformación eutéctica ternaria que debería haberse obtenido a la temperatura de 256,42°C, experimentalmente no se ha observado el pico correspondiente en el ensayo térmico.

Para la etapa de enfriamiento, figura 147 y tabla 64, se observa también al principio el pico poco definido anteriormente citado, pero ahora es de subida dado que es la etapa de enfriamiento y el sistema cede calor. La temperatura de inicio de este pico debería de coincidir con la temperatura final de la fusión en la etapa de calentamiento. Pero dado que el pico que se obtiene es poco definido no vamos a poder comparar esta temperatura.

El siguiente pico que aparece en la figura 147 en las aleaciones base, curvas roja y verde, es el de la transformación eutéctica binaria \(L' \leftrightarrow Al(fcc-\alpha') + Zn(hcp-\beta) \), y en las curvas azul y negra correspondientes a las adiciones de bismuto, el pico que se observa a continuación es el correspondiente a la transformación monotéctica ternaria \(L' \leftrightarrow L'' + Al(fcc-\alpha') + Zn(hcp-\beta) \).

En las curvas de enfriamiento tampoco se observa la reacción eutéctica ternaria y el último pico que se detecta es entonces el correspondiente a la transformación eutectoide. Comparando los valores de temperatura de la etapa de calentamiento y de la de enfriamiento, se obtienen diferencias apreciables para la transformación eutectoide de las aleaciones base, ya que existe una diferencia de 30°C entre ambas etapas. En cambio para la transformación eutéctica binaria solo hay una diferencia de 6°C. Por último para la transformación monotéctica ternaria, se produce una diferencia de 10°C, entre la etapa de calentamiento y la de enfriamiento.
5.9.2 85%Zn-15%Al + 4%Bi, caracterización microestructural

La siguiente adición de bismuto que se añade a la aleación base 85%Zn-15%Al es del 4% Bi. Las imágenes que se han obtenido mediante microscopía óptica de la aleación resultante, se muestran en la figura 148.

Las imágenes de la figura 148 muestran una microestructura similar a la de la aleación anterior de composición 85%Zn-15%Al + 2%Bi. Las zonas oscuras corresponden con la fase que inicialmente precipita $Al(fcc-a')$ y en las zonas claras se localizan las fases $Al(fcc-a)$ y $Zn(hcp-\beta)$ que solidifican tras la reacciones monotéctica y eutectoide ternarias. En la última parte del líquido que solidifica se concentra mayoritariamente el bismuto, que se en la imagen b) de la figura 148 se observa como una zona amarillenta inmersa en el agregado monotéctico.

A continuación se caracteriza esta aleación mediante SEM, las imágenes obtenidas se muestran en la figura 149.
En las imágenes obtenidas mediante SEM de la figura 149 se observa con más claridad la distribución de las zonas blancas correspondientes a la última parte del líquido en solidificar compuesto mayoritariamente por bismuto.

En las figuras 150, 151 y en las tablas 65 y 66, se muestra los resultados obtenidos en el ensayo térmico correspondiente.

Figura 150. Análisis térmico diferencial de la etapa de calentamiento de la aleación 85%Zn-15%Al + 4%Bi.

Figura 151. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 85%Zn-15%Al + 4%Bi.

Tablas 65 y 66. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 85%Zn-15%Al + 4%Bi.
Los datos de temperatura obtenidos para la aleación con 4% de bismuto son prácticamente iguales que los obtenidos para la aleación con un 2% Bi. En el enfriamiento se sigue perdiendo la señal correspondiente al eutéctico ternario.

5.9.3 85%Zn-15%Al + 6%Bi, caracterización microestructural

En las imágenes que se muestran en la figura 152 se muestra la microestructura de la aleación 85%Zn-15%Al + 6%Bi.

![Imágenes de microestructura](image)

Figura 152. Microestructura obtenida mediante Microscopía óptica a 500 aumentos de la aleación 85%Zn-15%Al + 6%Bi, a) enfriada al aire y b) enfriada en el interior del horno.

En la muestra tipo A de la imagen b) de la figura 152, que ha sido enfriada en el interior del horno, se observa de color oscuro la fase que inicialmente precipita Al(fcc-α') y en la zona clara, el agregado monotéctico, constituido por las fases Al(fcc-α') y Zn(hcp-β), posteriormente la fase Al(fcc-α') se transforma en Al(fcc-α) y Zn(hcp-β) tras producirse la reacción eutectoide ternaria Al(fcc-α') ↔ Al(fcc-α') + Zn(hcp-β). La muestra que ha sido enfriada al aire, imagen a) de la figura 152, presenta una microestructura con un gran número de dendritas de fase Al(fcc-α') de color oscuro y rodeadas del agregado monotéctico anteriormente comentado.

Entre la imagen a) y la b) de la figura 152 se observa una gran diferencia entre la muestra que ha sido enfriada al aire a) y la que ha sido enfriada de forma lenta en el interior del horno b). Las imágenes a) y b) están a los mismos aumentos y en la a) se observa un mayor número de dendritas y apenas agregado monotéctico, es decir, que con este tipo de enfriamiento, se favorece la nucleación de las dendritas, en cambio el realizar un enfriamiento lento en el interior del horno provoca que se produzca un
crecimiento o desarrollo de las dendritas y del agregado monotéctico ya que se le da el tiempo suficiente para ello.

Para completar la caracterización de la aleación 85%Zn-15%Al + 6%Bi se observa la microestructura en el SEM. En la figura 153 se muestra la imagen obtenida de dicha microestructura.

![Imagen de la microestructura](image)

Figura 153. Microestructura obtenida mediante Microscopía Electrónica de Barrido de la aleación 85%Zn-15%Al + 6%Bi tipo A.

En la imagen de la figura 153, se observa por una parte el agregado \([\text{Al(fcc-}\alpha')+\text{Zn(hcp-}\beta)]\) en la parte central de la imagen, y por otro lado se ven parte de las dendritas primarias de fase \(\text{Al(fcc-}\alpha')\) en las esquinas superior izquierda e inferior derecha.

En la imagen de la figura 153 se observa de forma clara que la transformación eutectoide \(\text{Al(fcc-}\alpha')\leftrightarrow\text{Al(fcc-}\alpha)+\text{Zn(hcp-}\beta)\) tiene lugar en la fase \(\text{Al(fcc-}\alpha')\) presente en el agregado monotéctico y en la dendritas primarias de solidificación, dando lugar a las láminas alternas de color negras y blancas.

En las gráficas de las figuras 154 y 155 se recogen las curvas del tipo DTA obtenidas para las muestras base 85%Zn-15%Al y para las muestras 85%Zn-15%Al + 6%Bi en el ensayo térmico correspondiente. El código de colores utilizado para cada una de las curvas es el mismo que para las aleaciones anteriores.
A diferencia de las aleaciones anteriores, para la aleación de composición 85%Zn-15%Al + 6%Bi, se ha observado el pico correspondiente a la reacción eutéctica ternaria tanto en la muestra que ha sido enfriada en el interior del horno, muestra tipo A como para la muestra que ha sido enfriada al aire, muestra tipo B. El resto de los picos que se observan en las figuras 154 y 155 son similares a los obtenidos para las aleaciones con adiciones del 2%Bi y del 4%Bi. Los datos de temperatura correspondientes a cada uno de los picos observados en las curvas de las figuras 154 y 155, se resumen en las tablas 67 y 68.

Tabla 67. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA, para la muestra 85%Zn-15%Al + 6%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 154)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,53</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
</tr>
<tr>
<td>Muestra A</td>
<td>251,93</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,07</td>
</tr>
</tbody>
</table>
Los resultados obtenidos para la adición de un 6% de bismuto son semejantes a los obtenidos para las adiciones de un 2% y 4% de bismuto.

5.9.4 85%Zn-15%Al + 8%Bi, caracterización microestructural

La siguiente adición que se realiza a la aleación 85%Zn-15%Al es de un 8% de bismuto. Las imágenes obtenidas en la caracterización de dicha aleación mediante microscopía óptica se muestran en la figura 156.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 155)</th>
<th>Solidificación</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>438,58</td>
<td>372,34</td>
<td>372,34</td>
<td>366,70</td>
<td>240,41</td>
</tr>
<tr>
<td>Base B</td>
<td>439,09</td>
<td>371,83</td>
<td>371,83</td>
<td>366,61</td>
<td>239,67</td>
</tr>
<tr>
<td>Muestra A</td>
<td>426,46</td>
<td>364,93</td>
<td>-</td>
<td>-</td>
<td>256,57</td>
</tr>
<tr>
<td>Muestra B</td>
<td>434,29</td>
<td>366,89</td>
<td>-</td>
<td>-</td>
<td>255,95</td>
</tr>
</tbody>
</table>

| Tabla 68. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico DTA, para la muestra 85%Zn-15%Al + 6%Bi. |

Los resultados obtenidos para la adición de un 6% de bismuto son semejantes a los obtenidos para las adiciones de un 2% y 4% de bismuto.

En las imágenes de la figura 156 no se observan cambio apreciables en la microestructura si la comparamos con la de las aleaciones anteriores de composiciones 85%Zn-15%Al + (2%Bi, 4%Bi y 6%Bi), lo único es que en la imagen a) de la figura 156 correspondiente a la microestructura de la aleación que ha sido enfriada al aire, el líquido L’’ solidificado rico en bismuto se encuentra en forma de grandes manchas claras, es decir, con la adición de un 8% de bismuto se hace más apreciable la fase L’’ que es a partir de la cual tiene lugar la reacción eutéctica ternaria L’’ ⇄ Bi(romb) + Al(fcc-α) + Zn(hep-β).
En las gráficas de las figuras 157 y 158 se muestran las curvas de las etapas de calentamiento y enfriamiento resultantes del ensayo térmico realizado a las muestras de la aleación 85%Zn-15%Al + 8%Bi.

![Figura 157. Análisis térmico diferencial de la etapa de calentamiento de la aleación 85%Zn-15%Al + 8%Bi.](image1)

![Figura 158. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 85%Zn-15%Al + 8%Bi.](image2)

En las figuras 157 y 158, correspondientes a las etapas de calentamiento y enfriamiento respectivamente, no se observan cambios en la tendencia seguida por los datos de temperatura hasta ahora para las aleaciones 85%Zn-15%Al + adiciones de bismuto. Los valores de temperatura obtenidos para cada uno de los picos observados en las curvas obtenidas se recogen en las tablas 69 y 70.

Tabla 69. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA, para la muestra 85%Zn-15%Al + 8%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 157)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,53</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,48</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,49</td>
</tr>
</tbody>
</table>
A diferencia de los resultados obtenidos en los ensayos térmicos para las aleaciones anteriores en la etapa de enfriamiento, para la aleación de composición 85%Zn-15%Al + 8%Bi se ha observado en la etapa de enfriamiento el pico correspondiente a la reacción eutéctica ternaria, esto es debido a la mayor adición de bismuto, 8% que hace que dicha transformación tenga lugar en mayor medida y pueda ser detectada también en la etapa de enfriamiento.

5.9.5 85%Zn-15%Al + 10%Bi, caracterización microestructural

En la imagen de la figura 159 se muestra el microestructura obtenida mediante microscopía óptica de la aleación 85%Zn-15%Al + 10%Bi.

![Microestructura](image)

Tabla 70. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico DTA, para la muestra 85%Zn-15%Al + 8%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 158)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>438,08</td>
</tr>
<tr>
<td>Base B</td>
<td>438,58</td>
</tr>
<tr>
<td>Muestra A</td>
<td>427,72</td>
</tr>
<tr>
<td>Muestra B</td>
<td>431,26</td>
</tr>
</tbody>
</table>

La imagen de la figura 159 muestra las dendritas primarias de fase $Al(fcc-\alpha')$ rodeadas del agregado monotéctico $[Al(fcc-\alpha') +Zn(hcp-\beta)]$ y pequeñas zonas donde se localiza el líquido L'' que es el último en solidificar y que está compuesto mayoritariamente por bismuto.
En las gráficas de las figuras 160 y 161 y en las tablas 71 y 72 se recogen los valores de temperaturas asociados a los picos obtenidos en el ensayo térmico realizado a las aleaciones 85%Zn-15%Al + 10%Bi.

En la tabla 71, se recogen los datos de temperatura de la etapa de calentamiento del ensayo térmico DTA de una muestra de la aleación 85%Zn-15%Al + 10%Bi.

Tabla 71. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA, para la muestra 85%Zn-15%Al + 10%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 160)</th>
<th>Fusión</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
</tr>
<tr>
<td>Base A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muestra A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muestra B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En la tabla 72, se recogen los datos de temperatura de la etapa de enfriamiento del ensayo térmico DTA de una muestra de la aleación 85%Zn-15%Al + 10%Bi.
La caracterización de la aleación 85%Zn-15%Al + 10%Bi, que se muestra en las figuras 160 y 161 y en las tablas 71 y 72, no presenta cambios apreciables con respecto a las aleaciones anteriores.

5.9.6 85%Zn-15%Al + 12%Bi, caracterización microestructural

En las imágenes de la figura 162 obtenidas mediante microscopía óptica, se muestra el aspecto superficial de la aleación 85%Zn-15%Al, con la adición de un 12% de bismuto.

![Figura 162. Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 85%Zn-15%Al + 12%Bi, enfriada en el interior del horno.](image)

En la imagen de la figura 162, que corresponde con la muestra enfriada en el interior del horno, se aprecian las dendritas primarias de fase Al(fcc-α') [194], el agregado monotéctico [Al(fcc-α') + Zn(hcp-β)] [195] y las partículas ricas en bismuto en los bordes de las dendritas anteriormente citadas.
Resultados y Discusión

En las figuras 163 y 164 se representan las curvas del ensayo térmico realizado a una muestra de la aleación 85%Zn-15%Al + 12%Bi.

De acuerdo a las curvas mostradas en las figuras 163 y 164, no se han observado cambios con respecto a las aleaciones anteriores, se detectan tres picos, el de la transformación eutéctica ternaria, (más pequeño), el de la transformación eutectoide ternaria y el correspondiente a la transformación monotéctica.

En las tablas 73 y 74, que se muestran a continuación, se plasman todos los datos de temperatura asociados a los picos aparecidos en las gráficas de las figuras 163 y 164.

Tabla 73. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA para la muestra 85%Zn-15%Al + 12%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 163)</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
<th>Fusión</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,54</td>
<td>381,99</td>
<td>277,82</td>
<td>283,66</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
<td>381,17</td>
<td>277,55</td>
<td>283,26</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,38</td>
<td>254,57</td>
<td>278,68</td>
<td>285,36</td>
<td>376</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,47</td>
<td>253,54</td>
<td>277,43</td>
<td>282,02</td>
<td>375,79</td>
</tr>
</tbody>
</table>
Resultados y Discusión

Tabla 74. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico DTA para la muestra 85%Zn-15%Al + 12%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 164)</th>
<th>85%Zn-15%Al +12% de Bismuto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>437,97</td>
<td>372,34</td>
</tr>
<tr>
<td>Base B</td>
<td>438,55</td>
<td>371,82</td>
</tr>
<tr>
<td>Muestra A</td>
<td>441,44</td>
<td>365,49</td>
</tr>
<tr>
<td>Muestra B</td>
<td>434,44</td>
<td>366,14</td>
</tr>
</tbody>
</table>

Las temperaturas de inicio y final de los picos de las curvas de las figuras 163 y 164 son similares a las temperaturas de los picos de los ensayos térmicos realizados a las aleaciones anteriores.

5.9.7 85%Zn-15%Al + 14%Bi, caracterización microestructural

La adición de un 14% de bismuto a aleación 85%Zn-15%Al, da como resultado una aleación cuyo aspecto superficial observado en el microscopio óptico se muestra en la figura 165.

Figura 165. Microestructura obtenida mediante Microscopía óptica de la aleación 85%Zn-15%Al + 8%Bi, enfriada en el interior del horno; a) X50 y b) X200.

Las imágenes de la figura 165 corresponden únicamente a las de la muestra que ha sido enfriada de forma lenta en el interior del horno ya que, en la que se ha enfriado al aire no se ha podido distinguir con claridad la microestructura. En estas imágenes se sigue observando las dendritas primarias de fase $Al(fcc-a')$ rodeadas del agregado monotéctico $[Al(fcc-a')+Zn(hcp-β)]$, de un color más oscuro en la imagen de la figura 165.
Una vez observada la microestructura al microscopio óptico, se realiza el correspondiente ensayo térmico a las muestras de la aleación 85%Zn-15%Al + 8%Bi. Las curvas obtenidas en las etapas de calentamiento y enfriamiento para las muestras tipo A y tipo B se muestran en las figuras 166 y 167, y las temperaturas asociadas a cada pico se recogen en las tablas 75 y 76.

Tabla 75 y 76. Resumen de los datos de temperatura obtenidos en el ensayo térmico DTA para la muestra 85%Zn-15%Al + 14%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 166)</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 167)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutética</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,54</td>
<td>381,99</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
<td>381,17</td>
</tr>
<tr>
<td>Muestra A</td>
<td>251,54</td>
<td>253,91</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,36</td>
<td>253,72</td>
</tr>
<tr>
<td>Base A</td>
<td>437,90</td>
<td>372,39</td>
</tr>
<tr>
<td>Base B</td>
<td>438,47</td>
<td>371,85</td>
</tr>
<tr>
<td>Muestra A</td>
<td>427,6</td>
<td>366,52</td>
</tr>
<tr>
<td>Muestra B</td>
<td>428,66</td>
<td>364,54</td>
</tr>
</tbody>
</table>
El programa térmico realizado a la aleación base con la adición de un 14% de bismuto, no revela aún cambios apreciables en los datos de temperatura si los comparamos con las adiciones anteriores de bismuto.

5.9.8 85%Zn-15%Al + 16%Bi, caracterización microestructural

En la imagen de la figura 168 se muestra la microestructura de la aleación base 85%Zn-15%Al con la adición de un 16% de bismuto.

Figura 168. Microestructura obtenida mediante Microscopía óptica a 100 aumentos de la aleación 85%Zn-15%Al + 16%Bi, enfriada en el interior del horno.

Como se observa en la imagen de la figura 168, la microestructura que presenta la aleación 85%Zn-15%Al + 16%Bi es semejante a la que presentan las aleaciones anteriormente estudiadas. Sobre la imagen se ha marcado con unas flechas la localización de la última parte del líquido que solidifica y que está compuesto mayoritariamente por bismuto. No se ha observado tampoco en esta aleación la microestructura característica del eutéctico ternario Zn-Al-Bi. Una vez observada la microestructura en el microscopio óptico, se realiza el ensayo térmico correspondiente. Los resultados del mismo se plasman en las figuras 169 y 170.

![Figura 169. Análisis térmico diferencial de la etapa de calentamiento de la aleación 85%Zn-15%Al + 16%Bi.](image1)

![Figura 170. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 85%Zn-15%Al + 16%Bi.](image2)
Los datos de temperatura asociados a cada pico que conforman las diferentes curvas de las figuras 169 y 170, se recogen en las tablas 77 y 78.

Tablas 77 y 78. Resumen de los datos de temperatura obtenidos en el ensayo térmico DTA para la muestra 85%Zn-15%Al + 16%Bi.

85%Zn-15%Al + 16% de Bismuto

Tabla 77. Resumen de los datos de temperatura obtenidos en el ensayo térmico DTA para la muestra 85%Zn-15%Al + 16%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 169)</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
<th>Fusión</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,53</td>
<td>381,99</td>
<td>277,78</td>
<td>283,66</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
<td>381,17</td>
<td>277,63</td>
<td>283,26</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td>251,75</td>
<td>253,67</td>
<td>278,69</td>
<td>283,91</td>
<td>375,74</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,60</td>
<td>253,84</td>
<td>277,39</td>
<td>283,28</td>
<td>375,93</td>
</tr>
</tbody>
</table>

85%Zn-15%Al + 16% de Bismuto

Tabla 78. Resumen de las señales térmicas del programa controlado de temperatura para la muestra 85%Zn-15%Al + 16%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 170)</th>
<th>Solidificación</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>437,40</td>
<td>372,31</td>
<td>372,31</td>
<td>366,70</td>
<td>240,53</td>
</tr>
<tr>
<td>Base B</td>
<td>438,41</td>
<td>371,84</td>
<td>371,84</td>
<td>366,61</td>
<td>239,62</td>
</tr>
<tr>
<td>Muestra A</td>
<td>418,05</td>
<td>364,37</td>
<td>-</td>
<td>-</td>
<td>259,08</td>
</tr>
<tr>
<td>Muestra B</td>
<td>423,90</td>
<td>363,91</td>
<td>-</td>
<td>-</td>
<td>258,23</td>
</tr>
</tbody>
</table>

Los datos de temperaturas obtenidos para las reacciones eutéctica, eutectoide y monotéctica son similares a las obtenidas para las aleaciones anteriores.

5.9.9 85%Zn-15%Al + 18%Bi, caracterización microestructural

En las imágenes de la figura 171, se muestra las microestructuras de la aleación 85%Zn-15%Al + 18%Bi.

Figura 171. Microestructura obtenida mediante Microscopía óptica a 50 aumentos de la aleación 85%Zn-15%Al + 18%Bi, a) enfriada al aire y b) enfriada en el interior del horno.
Con la adición de un 18% de bismuto a la aleación base 85%Zn-15%Al se observan cambios apreciables en la microestructura que en las adiciones anteriores no se observaban. Ya se ve una gran cantidad de microestructura eutéctica ternaria [30], marcada en las imágenes de la figura 171 como zona 2.

En la muestra que ha sido enfriada de forma lenta en el interior del horno, imagen b) de la figura 171 la microestructura eutéctica ternaria se localiza en la parte inferior del lingote de solidificación, y en la muestra enfriada de forma rápida al aire, imagen a), la microestructura eutéctica ternaria aparece a lo largo de toda la muestra, observándose mezcla de las zonas 1, constituidas por de dendritas primarias de fase Al(fcc-α’), con las zonas del eutéctico ternario, denominadas como zona 2. Como ya se ha comentado anteriormente, cada uno de los dos líquidos presentes, L’ y L”, van a solidificar por caminos independientes, por esta razón en las microestructuras de las imágenes figura 171 se distinguen estas dos zonas. Es en esta aleación, 85%Zn-15%Al + 18%Bi, donde se ha visto de forma más clara la presencia de estas dos zonas, ya que en las anteriores se observaba el líquido L” solidificado en pequeñas cantidades distribuido a lo largo de toda la muestra.

Una vez observada al microscopio óptico la microestructura de la aleación 85%Zn-15%Al + 18%Bi, se somete a la misma al ensayo térmico correspondiente. En las figuras 172 y 173 se muestran las curvas de calentamiento y enfriamiento para las diferentes muestras ensayadas.
Al igual que se ha observado en la caracterización óptica, en el ensayo térmico también se observan cambios con respecto a las aleaciones anteriores. Al formarse mayor cantidad de microestructura eutéctica ternaria, el pico correspondiente que aparece en la figura 172 es más intenso, tiene un mayor tamaño que el de las aleaciones anteriores. Y en la figura 173, correspondiente a la etapa de enfriamiento, ahora si se detecta el pico correspondiente a la transformación eutéctica ternaria, hecho que en las aleaciones anteriores se perdía o no se detectaba. En las tablas 79 y 80 se resumen los datos de temperaturas correspondientes a los picos obtenidos, tanto en la etapa de calentamiento figura 172, como en la etapa de enfriamiento, curvas de la figura 173.

Tabla 79 y 80. Resumen de los datos de temperatura obtenidos en el ensayo térmico DTA para la muestra 85%Zn-15%Al + 18%Bi.

Datos de temperatura en la etapa de calentamiento (Fig. 172)

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
<th>Fusión</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,53</td>
<td>381,99</td>
<td>277,78</td>
<td>283,66</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
<td>381,17</td>
<td>277,63</td>
<td>283,26</td>
</tr>
<tr>
<td>Muestra A</td>
<td>253,19</td>
<td>258,39</td>
<td>278,35</td>
<td>284,01</td>
</tr>
<tr>
<td>Muestra B</td>
<td>252,45</td>
<td>258,14</td>
<td>277,22</td>
<td>281,92</td>
</tr>
</tbody>
</table>

Datos de temperatura en la etapa de enfriamiento (Fig. 173)

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Solidificación</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>437,89</td>
<td>372,34</td>
<td>372,34</td>
<td>366,70</td>
</tr>
<tr>
<td>Base B</td>
<td>439,34</td>
<td>371,84</td>
<td>371,84</td>
<td>366,61</td>
</tr>
<tr>
<td>Muestra A</td>
<td>442,94</td>
<td>364,81</td>
<td>227,15</td>
<td>225,09</td>
</tr>
<tr>
<td>Muestra B</td>
<td>418,34</td>
<td>357,02</td>
<td>213,37</td>
<td>212,17</td>
</tr>
</tbody>
</table>

Los datos de temperaturas de la tabla 79 muestran que la dación de un 18% de bismuto provoca un retraso de 5ºC en el comienzo de la fusión de la aleación, si comparamos estos datos con los obtenidos en aleaciones anteriores Y en relación a las temperatura de la reacción eutéctica ternaria, se observa que con el 18% de bismuto añadido también se incrementa la temperatura de de comienzo de la reacción eutéctica ternaria en 2ºC.
En cuanto a los datos de temperatura la etapa de enfriamiento mostrados en la tabla 80, se detectan las temperaturas correspondientes al eutéctico ternario, que hasta el momento no se detectaban en aleaciones anteriores.

5.9.10 85%Zn-15%Al + 20%Bi, caracterización microestructural

La siguiente adición de bismuto realizada a la aleación 85%Zn-15%Al es la del 20%Bi. Una de las imágenes obtenidas en el microscopio óptico de la microestructura de dicha aleación, se muestra en la figura 174.

La microestructura de la aleación 85%Zn-15%Al + 20%Bi vuelve a tener el mismo aspecto que la aleación 85%Zn-15%Al con las adiciones del: 2%, 4%, 6%, 8%, 10%, 12%, 14% y 16% de bismuto, es decir, que se observan dendritas primarias de fase $\text{Al(fcc-}\alpha'\text{)}$ sobre un fondo de color claro constituido por el agregado monotéctico $[\text{Al(fcc-}\alpha'\text{)} + \text{Zn(hcp-}\beta\text{)}]$. Al añadir el 20% es como si se hubiera borrado la microestructura eutéctica ternaria en las imágenes obtenidas mediante microscopía óptica.

Siguiendo el esquema de las aleaciones anteriores, una vez finalizada la microscopía óptica, se realizan los ensayos térmicos, en las figuras 175 y 176, se muestran las curvas de calentamiento y enfriamiento para las aleaciones base binarias 85%Zn-15%Al (curvas roja y verde) y para las aleaciones ternarias con adición del 20% de bismuto (curvas azul y negra).
Resultados y Discusión

Las formas y el tamaño de los picos de las diferentes curvas de las figuras 175 y 176, son semejantes a los de las aleaciones con las adiciones del: 2%, 4%, 6%, 8%, 10%, 12%, 14% y 16% de bismuto, el pico correspondiente a la transformación eutéctica ternaria vuelve a tener la forma que tenía para las aleaciones anteriores y en la etapa de enfriamiento, se vuelve a perder la señal de la transformación eutéctica ternaria.

En cuanto a los datos de temperatura obtenidos en los diferentes picos de las curvas térmicas, se recogen en las tablas 81 y 82.

Tabla 81. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA para la muestra 85%Zn-15%Al + 20%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 175)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,53</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,68</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,39</td>
</tr>
</tbody>
</table>

Los datos de temperatura de la etapa de calentamiento no muestran cambios significativos comparados con los datos de temperatura obtenidos en aleaciones anteriores.
Resultados y Discusión

Tabla 82. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico DTA para la muestra 85%Zn-15%Al + 20%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 176)</th>
<th>Solidificación</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>437,74</td>
<td>372,35</td>
<td>372,35</td>
<td>366,70</td>
<td>240,19</td>
</tr>
<tr>
<td>Base B</td>
<td>437,98</td>
<td>371,82</td>
<td>371,82</td>
<td>366,61</td>
<td>239,79</td>
</tr>
<tr>
<td>Muestra A</td>
<td>428,3</td>
<td>364,16</td>
<td>224,77</td>
<td>222,73</td>
<td>258,45</td>
</tr>
<tr>
<td>Muestra B</td>
<td>435,36</td>
<td>363,61</td>
<td>-</td>
<td>-</td>
<td>257,01</td>
</tr>
</tbody>
</table>

Para el caso de la etapa de enfriamiento, ocurre igual que para la de calentamiento, no se han observado valores de temperaturas significativamente diferentes a los de aleaciones anteriores.

5.9.11 85%Zn-15%Al + 30%Bi, caracterización microestructural

En las imágenes de la figura 177, se muestran la microestructura de la aleación 85%Zn-15%Al con la adición de un 30% de bismuto.

Figura 177. Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 85%Zn-15%Al + 30%Bi, a) enfríada al aire y b) enfríada en el interior del horno.

Observando las imágenes de la figura 177, se detecta claramente por el tamaño de las dendritas primarias de fase Al(fcc-α') la muestra que ha sufrido un proceso de enfriamiento rápido, muestra B y la que ha sufrido un proceso de enfriamiento lento, muestra A. La microestructura de la muestra tipo A tiene el aspecto de ser una ampliación de la microestructura de la muestra tipo B, y es porque al sufrir un enfriamiento más lento, el calor se libera de forma más lenta hacia el exterior, la aleación solidifica lentamente y las dendritas tienen más tiempo para desarrollarse y
aumentar de tamaño. Esta microestructura es similar a la observada en aleaciones anteriores, excepto en la aleación 85%Zn-15%Al + 18%Bi donde además se ha observado la microestructura característica del eutéctico ternario [30].

Tras la observación de la microestructura al microscopio óptico, se sometieron las muestras de la aleación 85%Zn-15%Al + 30%Bi al ensayo térmico correspondiente, compuesto por una etapa inicial de calentamiento hasta la temperatura de 500ºC y cuyos resultados se muestran en las curvas endotérmicas de la figura 178, y una posterior y consecutiva etapa de enfriamiento, cuyos resultado se muestran en las curvas exotérmicas de la figura 179.

Las temperaturas inicio de cada uno de los picos y sus valores máximos, se resumen en las tablas 83 y 84.

Tabla 83. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA para la muestra 85%Zn-15%Al + 30%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 178)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,53</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,73</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,92</td>
</tr>
</tbody>
</table>
Los resultados obtenidos de las temperaturas de los picos de las curvas térmicas de la figura 178 y 179, siguen la tendencia seguida hasta el momento.

Tabla 84. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico DTA para la muestra 85%Zn-15%Al + 30%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 179)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>437,89</td>
</tr>
<tr>
<td>Base B</td>
<td>439,34</td>
</tr>
<tr>
<td>Muestra A</td>
<td>427,06</td>
</tr>
<tr>
<td>Muestra B</td>
<td>433,20</td>
</tr>
</tbody>
</table>

En las imágenes de la figura 180, se muestra la microestructura de la aleación con la adición de un 40% de bismuto.

Figura 180. Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 85%Zn-15%Al + 40%Bi, a) enfriada al aire y b) enfriada en el interior del horno.

Como se ha estado observando hasta ahora, en la muestra que ha sido enfriada al aire a), se observa un gran número de dendritas y apenas agregado monotéctico, en cambio en la imagen b), que corresponde con la muestra que ha sido enfriada en el interior del horno, se observa todo lo contrario, grandes dendritas y en menor número sobre el agregado monotéctico.
A continuación, en las figuras 181 y 182 se muestran las curvas térmicas de las etapas de calentamiento y enfriamiento del ensayo tipo DTA, realizado a unas muestras de la aleación 85%Zn-15%Al + 40%Bi, una tipo A y otra tipo B. Y al igual que se ha hecho para las aleaciones anteriores, las curvas térmicas correspondientes a las muestras tipo A y B se representan conjuntamente con las correspondientes A y B de la aleación base, con el propósito de observar los cambios que producen la adición del bismuto en el comportamiento térmico de estas aleaciones.

![Figura 181. Análisis térmico diferencial de la etapa de calentamiento de la aleación 85%Zn-15%Al + 40%Bi.](image1)

![Figura 182. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 85%Zn-15%Al + 40%Bi.](image2)

Los datos de temperatura correspondientes a cada uno de los picos obtenidos en las figuras 181 y 182 se resumen en las tablas 85 y 86.

Tabla 85. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA para la muestra 85%Zn-15%Al + 40%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 181)</th>
<th>85%Zn-15%Al + 40% de Bismuto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,53</td>
<td>381,99</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
<td>381,17</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,09</td>
<td>254,86</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,38</td>
<td>254,05</td>
</tr>
</tbody>
</table>
Resultados y Discusión

La tabla 86 muestra los resultados de las temperaturas obtenidas en la etapa de enfriamiento del ensayo térmico DTA para la muestra 85%Zn-15%Al + 40%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 182)</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>Inicio</td>
<td>439,34</td>
<td>371,84</td>
<td>372,34</td>
</tr>
<tr>
<td>Base B</td>
<td>Inicio</td>
<td>437,89</td>
<td>372,34</td>
<td>371,84</td>
</tr>
<tr>
<td>Muestra A</td>
<td>Inicio</td>
<td>425,98</td>
<td>363,54</td>
<td>230,76</td>
</tr>
<tr>
<td>Muestra B</td>
<td>Inicio</td>
<td>434,28</td>
<td>362,53</td>
<td>-</td>
</tr>
</tbody>
</table>

Los resultados obtenidos para la aleación 85%Zn-15%Al + 40%Bi, no difieren de los obtenidos para la aleación base con las adiciones del 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 20% y 30% de bismuto.

5.9.13 85%Zn-15%Al + 50%Bi, caracterización microestructural

En la imagen 183 se muestra la microestructura de la aleación base 85%Zn-15%Al con la adición de un 50% de bismuto.

![Figura 183. Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 85%Zn-15%Al + 50%Bi, enfriada en el interior del horno.](image)

El bismuto añadido a la aleación 85%Zn-15%Al, se concentra en forma de la fase líquida L” que una vez solidificada, se localiza en los bordes de las dendritas, en la figura 183 estas fases líquidas, que son las últimas en solidificar, se han resaltado rodeándolas con un círculo blanco.

En cuanto al ensayo térmico diferencial DTA, los resultados de la etapa de calentamiento y enfriamiento se presentan en las figuras 184 y 185, respectivamente.
Las curvas obtenidas tanto en la etapa de calentamiento como en la etapa de enfriamiento, son similares a las obtenidas para las aleaciones estudiadas en apartados anteriores. Las temperaturas de inicio y máximas de cada uno de los picos registrados en las figuras 184 y 185, se recogen en las tablas 87 y 88.

Tablas 87 y 88. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 85%Zn-15%Al + 50%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 184)</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 185)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
</tr>
<tr>
<td>Base A</td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
</tr>
<tr>
<td>Base B</td>
<td>378,53</td>
<td>381,99</td>
</tr>
<tr>
<td>Muestra A</td>
<td>378,21</td>
<td>381,17</td>
</tr>
<tr>
<td>Muestra B</td>
<td>252,22</td>
<td>255,11</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,16</td>
<td>253,30</td>
</tr>
</tbody>
</table>

Los datos de temperatura de las tablas 87 y 88, no muestran cambios significativos si se comparan con los obtenidos para aleaciones anteriores.
5.9.14 85%Zn-15%Al + 60%Bi, caracterización microestructural

Para finalizar con el apartado de la aleación 85%Zn-15%Al, la última adición que se realiza es de un 60% de bismuto. En la figura 186 se muestran las imágenes obtenidas con el microscopio óptico para esta aleación.

![Figura 186. Microestructura obtenida mediante Microscopía óptica a 100 aumentos de la aleación 85%Zn-15%Al + 60%Bi, a) enfriada al aire y b) enfriada en el interior del horno.](image)

Como se observa en las imágenes de la figura 186, y al igual que pasaba para la aleación con la adición de un 18% de bismuto, en la aleación 85%Zn-15%Al + 60%Bi se observa la microestructura característica del eutéctico ternario Zn-Al-Bi [30]. Tanto en la muestra tipo A como en la tipo B, se distingue la zona 2 que es la correspondiente al eutéctico ternario y la zona 1 que es la microestructura formada por las dendritas primarias de fase $\text{Al}(\text{fcc-}\alpha')$ rodeadas del agregado monotéctico $[\text{Al}(\text{fcc-}\alpha') + \text{Zn}(\text{hcp-}\beta)]$. En la muestra tipo A la zona 2 ocupa casi la totalidad de la microestructura que se observa al óptico, en cambio en la muestra tipo B, esta zona se localiza en formas circulares y no en toda la muestra. Este hecho es debido al diferente tipo de enfriamiento que sufren ambas muestras, que hace que la muestra que se está enfriando de forma lenta se pueda desarrollar en mayor medida la reacción eutéctica ternaria.

Una vez observadas las microestructuras de las muestras tipo A y B al óptico, se realiza el ensayo térmico diferencial, DTA. Las diferentes curvas que se obtienen en el mismo se muestran en las figuras 187 y 188.
Resultados y Discusión

Al igual que pasaba en la aleación con un 18% de adición de Bi, en las curvas de calentamiento de la figura 187 se observa que el pico correspondiente a la transformación eutéctica ternaria es de mayor intensidad que el pico que se obtiene en las aleaciones con el resto de adiciones. Y en las curvas de enfriamiento de la figura 188 también se detecta dicho pico. En las tablas 89 y 90 se resumen todas las temperaturas de todos los picos obtenidos en las gráficas de las figuras 187 y 188.

Tabla 89 y 90. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 85%Zn-15%Al + 60%Bi

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 187)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
<td>Monotéctica</td>
<td>Fusión</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>378,53</td>
<td>381,99</td>
<td>277,78</td>
<td>283,66</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>378,21</td>
<td>381,17</td>
<td>277,63</td>
<td>283,26</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,65</td>
<td>257,29</td>
<td>277,72</td>
<td>282,96</td>
<td>375,14</td>
<td>378,35</td>
</tr>
<tr>
<td>Muestra B</td>
<td>252,99</td>
<td>257,10</td>
<td>277,70</td>
<td>282,96</td>
<td>375,14</td>
<td>378,35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 188)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
<td>Eutéctica</td>
<td>Eutectoide</td>
<td>Monotéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>437,89</td>
<td>372,34</td>
<td>372,34</td>
<td>366,70</td>
</tr>
<tr>
<td>Base B</td>
<td>439,34</td>
<td>371,84</td>
<td>371,84</td>
<td>366,70</td>
</tr>
<tr>
<td>Muestra A</td>
<td>436,09</td>
<td>365,62</td>
<td>220,51</td>
<td>218,74</td>
</tr>
<tr>
<td>Muestra B</td>
<td>433,56</td>
<td>359,88</td>
<td>208,20</td>
<td>205,14</td>
</tr>
</tbody>
</table>
Resultados y Discusión

En cuanto a los datos de temperatura, que se muestran en las tablas 89 y 90, se ve también el pequeño aumento de temperatura de inicio de la transformación eutéctica ternaria si se compara con la temperatura obtenida en las otras aleaciones donde no se ha observado la microestructura eutéctica ternaria al microscopio óptico.

Una vez estudiada la última de las aleaciones del apartado correspondiente a las aleaciones 85%Zn-15%Al, en la imagen 189 se muestra a modo de resumen un esquema con las imágenes obtenidas en la caracterización microestructural al microscopio óptico, con el propósito de comparar de forma global unas con otras y resaltar las principales diferencias entre unas microestructuras y otras.

Figura 189. Microestructuras obtenidas mediante microscopía óptica a 100 aumentos para las aleaciones a) 85%Zn-15%Al + 10%Bi; b) 85%Zn-15%Al + 18%Bi; c) 85%Zn-15%Al + 20%Bi; d) 85%Zn-15%Al + 30%Bi; e) 85%Zn-15%Al + 40%Bi; f) 85%Zn-15%Al + 50%Bi; g) 85%Zn-15%Al + 60%Bi.
A lo largo de todo el apartado 4.9 se han ido discutiendo las microestructuras de las diferentes aleaciones formuladas con las adiciones de bismuto a partir de la aleación base 85%Zn-15%Al. Como se observa en todas las imágenes la figura 189, las microestructuras son semejantes y están formadas por dendritas de fase $Al(fcc-\alpha')$ rodeadas del agregado monotéctico $[Al(fcc-\alpha') + Zn(hcp-\beta)]$. El bismuto añadido se localiza preferentemente en la fase líquida L'', la cual solidifica la última y da lugar a la reacción eutéctica ternaria: $L''\leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) + Bi(romb)$. La microestructura resultante de la reacción eutéctica ternaria, formada por largas espigas ricas en $Zn(hcp-\beta)$ embebidas en una matriz rica en $Bi(romb)$, solo se ha observado con claridad en el microscopio óptico para las aleaciones 85%Zn-15%Al +18%Bi y 85%Zn-15%Al + 60%Bi.

La localización preferencial del bismuto en los bordes interdendríticos en las aleaciones Zn-Al-Bi encuentra su explicación en un estudio realizado por J. Hinojosa Torres [196] sobre la aleación de composición de Zn-22%Al-2% en peso de Cu. En este estudio observaron que la emisión de cobre a las regiones interdendríticas, al igual que pasa con el bismuto en este estudio, se producía por la saturación de la fase rica en aluminio con zinc, y por medio del microanálisis observaron que el cobre se encontraba principalmente en la zona interdendrítica. Este hecho lo explican diciendo que durante la solidificación el primer sólido en formarse es la fase $Al(fcc-\alpha)$ luego y de acuerdo al diagrama de fases, el zinc es muy soluble en la fase $Al(fcc-\alpha)$ mientras que la solubilidad del cobre en dicha fase es muy pequeña, al igual que ocurre en este caso con el bismuto.

Este efecto produce una saturación de la fase $Al(fcc-\alpha)$ por el zinc, creando un potencial químico que sirve como barrera a la entrada del cobre. Al disminuir más la temperatura la solubilidad del Cobre en $Al(fcc-\alpha)$ es mucho menor, resultando que casi todo el Cobre se queda en el líquido que al solidificar forma la región interdendrítica. Lo mismo que se ha observado en las aleaciones de este trabajo.

Entonces, la fase rica en aluminio se endurece principalmente por precipitados de zinc y no de cobre. Esto repercute en la deformabilidad de esta aleación, pues la alta dureza de esta fase (dendritas) hace que ésta se comporte rígidamente durante la deformación deslizándose entre la fase blanda interdendrítica rica en cobre. Este hecho
también podría aplicarse a las aleaciones de este trabajo, ya que la microestructura que se ha observado en ellas concuerda con este el estudio de J. Hinojosa [196].

A continuación, y siguiendo el esquema de presentación de resultados para las aleaciones anteriores, en la figura 190 se representan las curvas de calor absorbido frente a la temperatura para las aleaciones base y en las figuras 191, 192, 193 y 194 para las aleaciones base con las diferentes adiciones de bismuto realizadas.

La curva roja calorimétrica de la figura 190 corresponde con una muestra de la aleación base 85%Zn-15%Al que ha sido enfriada al aire, muestra B y la curva verde con la muestra tipo A. En ambas curvas se distinguen dos picos, el que tiene lugar a menores temperaturas, que corresponde con la transformación eutectoide binaria y representa el calor que absorbe la aleación para poder llevar a cabo dicha transformación, y el segundo pico, más definido, que corresponde con la transformación eutéctica binaria. A continuación de este pico y prácticamente solapado con él, se produce un cambio poco definido en las curvas DSC. Este cambio corresponde con el inicio y final de la fusión completa de la aleación, pero dado lo poco definido que se obtiene este cambio, no es posible realizar su análisis correspondiente para la obtención del calor absorbido por la aleación para fundirse por completo.

En las figuras 191-194 se muestran las curvas DSC para las aleaciones base tipo A con las adiciones del 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 30%, 40%, 50% y 60%.
Con la adición de bismuto aparece un tercer pico en las curvas de las figuras 191-194 que corresponde con el calor absorbido en la transformación eutéctica ternaria, los otros dos son debidos a la eutectoide ternaria y el último, el que aparece a mayores temperaturas el debido a la transformación monotéctica.

En la tabla 91 se anotan todos los valores del calor absorbido en los picos obtenidos en todas las curvas de las figuras 190-194. Los datos que aparecen con asterisco son para diferenciar que esos datos son los del calor absorbido en la reacción eutéctica binaria, ya que la reacción monotéctica no tiene lugar el sistema binario Zn-Al.
Observando y analizando en global todas las curvas DSC de las figuras 190-194 y los datos que se extraen de ellas, se extraen las siguientes conclusiones.

- De las tres reacciones invariantes analizadas, la monotéctica ternaria es la que conlleva una mayor absorción de calor para que tenga lugar excepto para los casos en los que la adición de bismuto es de un 18% y un 60%, donde la transformación eutéctica ternaria es la que mayor calor absorbe.

- Excepto para la aleación con adición del 60% de Bi no se ha obtenido una relación mayor %bismuto añadido ↔ mayor cantidad de calor absorbido.

Los datos de calor absorbido para la reacción eutéctica ternaria muestran valores comprendidos entre 1,8J/g-9,3J/g, excepto para las aleaciones con las adiciones del 18% y 60% de bismuto, que se obtienen valores de 20,38J/g y 24,63J/g respectivamente. Estos resultados guardan relación con los obtenidos en la caracterización óptica, donde se ha observado que en las aleaciones 85%Zn-15%Al + 18%Bi y 85%Zn-15%Al + 60%Bi se desarrolla una gran cantidad de microestructura eutéctica ternaria, que como se acaba de
comprobar, conlleva una mayor absorción de calor para que dicha transformación tenga lugar. En función de estos resultados se concluye que cuanto más desarrollada está la microestructura eutéctica ternaria en las muestras, mayor es el calor absorbido por las mismas. De esta forma, la aleación 85%Zn-15%Al + 0%Bi sería la siguiente muestra en la que más se ha desarrollado dicha microestructura.

- En cuanto a los datos de calor absorbido en la reacción eutectoide ternaria hay que destacar que, aunque la transformación eutectoide ternaria $\text{Al}(fcc-\alpha') + (L'') \leftrightarrow \text{Al}(fcc-\alpha) + \text{Zn}(hcp-\beta)$, deriva casi exclusivamente de la eutectoide binaria $\text{Al}(fcc-\alpha') \leftrightarrow \text{Al}(fcc-\alpha) + \text{Zn}(hcp-\beta)$ [30], los calores absorbidos en la ternaria son un 40% menores. Este hecho se puede deber a la presencia de la fase líquida L'' en la aleación ternaria durante esta transformación y que en la aleación binaria no se está. Y en general para todos los valores de calor absorbido para esta reacción tampoco siguen ninguna tendencia, ya que el mayor valor se obtiene para la aleación del 4%Bi con 21,49J/g y el menor valor para la aleación del 60%Bi.

Una vez comparados los flujos de calor absorbidos por las diferentes aleaciones en las reacciones eutéctica, eutectoide y monotéctica ternarias, se comparan ahora los datos de temperatura a los cuales se producen los diferentes cambios en las fases presentes. En las figuras 195-197 se muestran las gráficas comparativas de las curvas DTA para las aleaciones 85%Zn-15%Al + adiciones de bismuto.

Figura 195. Análisis térmico diferencial de la etapa de calentamiento para la aleación 85%Zn-15%Al base y las adiciones de 2%, 4%, 6%, 8% y 10% Bi.

Figura 196. Análisis térmico diferencial de la etapa de calentamiento para la aleación 85%Zn-15%Al base y las adiciones de 12%, 14%, 16%, 18% y 20% Bi.
Resultados y Discusión

En las curvas mostradas en la figura 195 se observa que para la aleación con la adición del 2% Bi, no se obtiene el primer correspondiente a la reacción eutéctica ternaria y que en la aleación con la adición del 8% y del 10%, los picos correspondientes a esta reacción son más intensos y de mayor tamaño comparados con los picos de las otras aleaciones que aparecen también representadas en la figura 195. El resto de la curva es similar para todas las aleaciones, ya que los picos se superponen casi por completo.

En la figura 196 hay que destacar que para la aleación con la adición del 18% Bi el pico que se obtiene en la reacción eutéctica ternaria tiene una intensidad superior a la de los otros picos de la reacción eutéctica de las otras aleaciones representadas a su lado. Este hecho va acompañado con que la intensidad del pico que se obtiene para la transformación monotéctica para esta misma aleación es la menor de todas las representadas en la figura 196, estos resultados están en consonancia con los datos de calor absorbidos mostrados en la tabla 91.

En la figura 197, en la cual están representadas las curvas DTA para las aleaciones con las adiciones del 20%, 30%, 40%, 50% y 60% Bi, se observa el mismo comportamiento para la aleación con la adición del 60% Bi que el comentado anteriormente para la aleación del 18% Bi. El resto de curvas para las demás aleaciones, son muy similares entre sí.

![Figura 197. Curvas DTA de la etapa de calentamiento para la aleación 85%Zn-15%Al base y las adiciones del 20%, 30%, 40%, 50% y 60% Bi.](image-url)
En la tabla 92, se resumen las temperaturas de inicio de cada uno de los picos de las curvas representadas en las figuras 195-197.

Tabla 92. Resumen de las señales térmicas obtenidas en el del programa controlado de temperatura para la muestra 85%Zn-15%Al + Adiciones de Bismuto.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura en la etapa de Calentamiento (°C)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctico Ternario</td>
<td>Eutectoide Ternario</td>
</tr>
<tr>
<td>Base</td>
<td>*378,20</td>
<td>**277,74</td>
</tr>
<tr>
<td>+2%Bi</td>
<td>-</td>
<td>279,24</td>
</tr>
<tr>
<td>+4%Bi</td>
<td>250,41</td>
<td>278</td>
</tr>
<tr>
<td>+6%Bi</td>
<td>251,93</td>
<td>278,68</td>
</tr>
<tr>
<td>+8%Bi</td>
<td>252,48</td>
<td>278,96</td>
</tr>
<tr>
<td>+10%Bi</td>
<td>252,79</td>
<td>278,93</td>
</tr>
<tr>
<td>+12%Bi</td>
<td>252,38</td>
<td>278,68</td>
</tr>
<tr>
<td>+14%Bi</td>
<td>251,54</td>
<td>278,77</td>
</tr>
<tr>
<td>+16%Bi</td>
<td>251,75</td>
<td>278,69</td>
</tr>
<tr>
<td>+18%Bi</td>
<td>253,19</td>
<td>278,35</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>252,68</td>
<td>278,68</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>252,73</td>
<td>278,61</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>252,09</td>
<td>278,41</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>252,22</td>
<td>278,58</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>252,65</td>
<td>277,72</td>
</tr>
</tbody>
</table>

*Temperatura eutéctica binaria; **Temperatura eutectoide binaria.

Si comparamos los datos de temperatura obtenidos mediante la simulación termodinámica con Thermo-Calc [188] mostrados en las figura 141 y 142 con los obtenidos en los ensayos térmicos, resumidos en la tabla 92, se concluyen los siguientes puntos.

- La temperatura experimental a la cual tiene lugar la transformación eutéctica ternaria, 251°C-253,19°C difiere en 5°C con la que predice la simulación termodinámica [188] y entre 1-2°C con los datos de bibliografía [30, 31]. Y si las comparamos con la temperaturas obtenidas para los juego de aleaciones 20%Zn-80%Al y 40%Zn-60%Al, son similares.
En cuanto a la transformación eutectoide ternaria, los datos obtenidos experimentalmente, tabla 92, son muy similares tanto a los que predice la simulación termodinámica, 277,63°C [188], como a los que se extraen de la bibliografía, 278,1°C [30, 31].

La transformación monotéctica ternaria se obtiene a la temperatura de 370,97°C en la simulación termodinámica [188] y en la bibliografía a 376°C. Experimentalmente se obtiene a 375°C, existe por tanto una discrepancia de 5°C con lo que predice la simulación, pero en cambio comparada con los datos bibliográficos [30, 31], es muy similar dicha temperatura.

La últimas dos columnas que aparece reflejadas en la tabla 92 son las correspondientes al inicio de la fusión de la aleación por formación de la fase líquida, denominada como L’. Si comparamos los datos de temperatura obtenidos experimentalmente con los obtenidos mediante simulación termodinámica con Thermo-Calc [129], se observan grandes diferencias. Las temperaturas obtenidas mediante simulación muestran un aumento progresivo de dicha temperatura conforme aumenta el contenido de bismuto añadido, en cambio, si nos fijamos en los datos experimentales, esta tendencia no se ha observado ya que las temperaturas se encuentran comprendidas entre 395°C-402°C, por tanto, los resultados teóricos no predicen a los experimentales para la aparición de la fase líquida L’.
5.10 Simulación termodinámica de la aleación base 94%Zn-6%Al

La cuarta de las composiciones estudiadas del diagrama binario Zinc-Aluminio es la de 94%Zn-6%Al. Siguiendo el mismo esquema de exposición de resultados, en la figura 198 se muestra el diagrama de fases binario Zn-Al obtenido mediante simulación termodinámica con el programa Thermo-Calc [188].

Sobre el diagrama Zn-Al de la figura 198 se marca con una línea discontinua de color rojo la composición que se va a estudiar, 94%Zn-6%Al y con los números 1-5, los puntos en los cuales se produce un cambio significativo de las fases presentes.

Figura 198. Diagrama de fases del sistema Zinc-Aluminio, obtenido mediante simulación termodinámica con el software Thermo-Calc [188].

De acuerdo con el diagrama binario teórico de la figura 198, la composición 94%Zn-6%Al es hipereutéctica. Al igual que se ha hecho para las aleaciones anteriores, con una línea roja discontinua se marca el hipotético camino de solidificación seguido por la aleación 94%Zn-6%Al en estudio. En la gráfica de la figura 199 se representa esta línea roja discontinua en forma de fracciones molares vs temperatura. Los puntos del 1-5 marcan las zonas donde se produce un cambio significativo en la composición de alguna de las fases, y se muestran tanto en la figura 198 como en la 199.
En la figura 199 se observa la evolución de las fases L' (línea azul), $Al(fcc-\alpha)$ (línea roja), $Al(fcc-\alpha')$ (línea verde) y $Zn(hcp-\beta)$ (línea morada). Los valores de temperatura y composición para los cinco puntos reflejados sobre las líneas de colores de la figura 199 se resumen en la tabla 93.

![Figura 199. Variación de las fases presentes en el sistema 94\%Zn-6\%Al con la temperatura [189].](image)

Tabla 93. Resumen de los cambios principales que tienen lugar en la aleación base 94\%Zn-6\%Al.

<table>
<thead>
<tr>
<th>Punto Interés</th>
<th>T(°C)</th>
<th>Líquido</th>
<th>$Al(fcc-\alpha)$</th>
<th>$Al(fcc-\alpha')$</th>
<th>$Zn(hcp-\beta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>390,8</td>
<td>0,61</td>
<td>0</td>
<td>0</td>
<td>0,39</td>
</tr>
<tr>
<td>3</td>
<td>380,8</td>
<td>0</td>
<td>0,098</td>
<td>0,90</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>277,2</td>
<td>0</td>
<td>0,11</td>
<td>0,88</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0</td>
<td>0,06</td>
<td>0</td>
<td>0,94</td>
</tr>
</tbody>
</table>

En el punto 1 a la temperatura de 700°C, toda la aleación se encuentra en estado líquido, es decir que la fracción molar es de 1. A medida que la temperatura desciende la aleación se enfriá y se llega al punto 2 a la temperatura de 390°C, donde se cruza por la línea del líquido y comienza a solidificar la aleación mediante la formación de la fase $Zn(hcp-\beta)$. A medida que sigue disminuyendo la temperatura, la fracción molar de $Zn(hcp-\beta)$ va aumentando a costa del líquido hasta llegar al punto 3 a 380°C, donde tiene lugar la transformación eutéctica y todo el líquido restante se transforma en las fases $Al(Fcc-\alpha')$ y $Zn(hcp-\beta)$ de acuerdo con la reacción $L' \leftrightarrow Al(Fcc-\alpha') + Zn(hcp-\beta)$.
La reacción eutéctica binaria tiene lugar en los espacios interdendríticos de la fase que inicialmente precipita, $\text{Zn}(hcp-\beta)$. A partir del punto 3, la composición de las fases $\text{Al}(fcc-\alpha')$ y $\text{Zn}(hcp-\beta)$ se mantienen prácticamente constantes.

En el punto 4 a la $T=277^\circ C$, ocurre la transformación eutectoide, mediante la cual, la fase $\text{Al}(fcc-\alpha')$ se trasforma en $\text{Al}(fcc-\alpha) + \text{Zn}(hcp-\beta)$. A partir del punto 4 las fracciones molares de las fases presentes se mantienen prácticamente constantes hasta el punto 5, a la temperatura de 100°C.

5.11 Aleaciones 94%Zinc-6%Aluminio. Caracterización Material Base.

Al igual que se ha hecho para las aleaciones anteriores, se comienza con la caracterización de la aleación base observando al microscopio óptico la microestructura correspondiente. Los resultados se muestran en las imágenes de la figura 200.

Viendo las imágenes a) y b) de las figura 200 correspondientes a la muestra 94%Zn-6%Al se puede concluir que esta composición no corresponde exactamente con la eutéctica como dice Murray [193], puesto que aparecen dendritas en la microestructura, aunque esta muy próxima porque se aprecia gran cantidad de microestructura eutéctica en las imágenes. Y dado que aparecen dendritas en la microestructura y son iguales a las que se han observado para la aleación 85%Zn-15%Al, la composición de partida de la aleación 94%Zn-6%Al es hipoeutéctica. Y en cuanto a la muestra que ha sido enfriada al aire de forma rápida, imagen a) de la figura 200 y la que se ha enfriado lentamente en el interior del horno b), se va clara la diferencia, en la microestructura de la muestra A están más desarrolladas, tanto las
dendritas primarias de fase $Al(fcc-\alpha')$, como las laminillas alternas de las fases $Al(fcc-\alpha)$ y $Zn(hcp-\beta)$ de la microestructura eutéctica ternaria.

La composición real de la muestra tampoco sería la que predice la simulación termodinámica, ya que como se acaba de comentar, las dendritas primarias son de fase $Al(fcc-\alpha')$ y no de fase $Zn(hcp-\beta)$.

Una vez observada al microscopio óptico la microestructura de la aleación base 94%Zn-6%Al, se caracterizó la muestra mediante SEM. En la figura 201 se muestran las imágenes obtenidas.

En las imágenes de la figura 247 se observa con más claridad la microestructura eutéctica presente compuesta por láminas alternas de las fases $Al(fcc-\alpha)$ y $Zn-(hcp-\beta)$ con claros límites de grano y escasas dendritas. A diferencia de las imágenes obtenidas con el microscopio óptico, en las obtenidas en el SEM se observa en el interior de las dendritas que ha tenido lugar la reacción eutectoide $Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn-(hcp-\beta)$ ya que se ve parte de las laminillas alternas iguales a las que se ven en el agregado eutéctico. Por tanto, la solidificación de la aleación 94%Zn-6%Al se inicia con la precipitación de las dendritas de fase $Al(fcc-\alpha')$.

Una vez observada la microestructura al óptico y al SEM, se procedió a realizar el estudio térmico correspondiente. Este estudio es igual que el realizado a las aleaciones anteriores y consta de una etapa de calentamiento con rampa de 5°C/min, seguida de una etapa de enfriamiento.
Este ensayo se realiza tanto a una muestra que ha sido enfriada en el interior del horno, tipo A como a una muestra de la aleación 94%Zn-6%Al que ha sido enfriada al aire, tipo B. Los resultados obtenidos en ambas etapas se muestran en las gráficas de las figuras 202 y 203.

Las curvas de color verde de las figuras 202 y 203 corresponden a las muestras que han sufrido un enfriamiento lento y las curvas de color rojo, con las muestras que han sido enfriadas al aire. Observando dichas figuras, no hay diferencias apreciables entre ambas curvas, se obtiene un primer pico a temperaturas más bajas correspondiente a la transformación eutectoide y un segundo pico de mayor intensidad localizado a mayores temperaturas y que corresponde con la reacción eutéctica. En ninguna de las cuatro curvas se ha observado el pico correspondiente a la zona del diagrama en la que coexisten las fases líquida L y Al(fcc-α'). Esto es debido a que esta región es muy pequeña. Si nos fijamos en los datos obtenidos mediante simulación y mostrados en la tabla 93, esta región abarca a penas 10°C, está muy próxima a la reacción eutéctica y es muy posible que el segundo pico que se obtiene englobe tanto a la reacción eutéctica como a la región L + Al(fcc-α') que es donde termina de fundirse la aleación.

En la tabla 94 se recogen todos los datos de temperatura correspondientes a estas curvas.
Tabla 94 y 95. Resumen de los datos de temperatura obtenidos en el ensayo térmico DTA para la muestra 94%Zn-6%Al, correspondiente a la aleación base.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura en la etapa de Calentamiento (Fig. 202)</th>
<th>R. Eutéctica</th>
<th>R. Eutectoide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,89</td>
<td>385,06</td>
<td>279,96</td>
</tr>
<tr>
<td>Base B</td>
<td>380,79</td>
<td>385,68</td>
<td>279,88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de Temperatura en la etapa de Enfriamiento (Fig. 203)</th>
<th>R. Eutéctica</th>
<th>R. Eutectoide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>375,44</td>
<td>363,50</td>
<td>260,05</td>
</tr>
<tr>
<td>Base B</td>
<td>378,33</td>
<td>361,46</td>
<td>256,29</td>
</tr>
</tbody>
</table>

En las tablas 94 y 95 se anotan los datos de temperaturas asociados a cada uno de los picos obtenidos en las curvas de las figuras 202 y 203. En concreto se anotan la temperatura correspondiente al inicio y al máximo del pico.

En la etapa de calentamiento, no se observan diferencias en los datos de temperatura entre la muestra A y B, por tanto, el proceso de enfriamiento al cual se someten las muestra de la aleación base 94% Zn-6%Al, no influye posteriormente en los datos de temperatura que se obtienen del ensayo térmico diferencial de dichas muestras. La temperaturas correspondientes a las transformación eutectoide son ligeramente superiores a las que se recogen en bibliografía [30, 31, 193], en concreto dos grados por encima, que puede ser debido a lo poco definido que se obtiene el pico correspondiente y que se cometa mas error a la hora de obtener la temperatura integrándolo.

En la tabla 95 se muestran los datos de temperatura de la etapa de enfriamiento, y en ellos se produce una mayor desviación de la temperatura, por tanto, se tomarán para la discusión de resultados las temperaturas de la etapa de calentamiento por estar éstas más cercanas a la encontradas en bibliografía [30, 31, 193].

En la figura 204 se comparan los datos de temperatura obtenidos experimentalmente en los ensayos térmicos mostrados en las tablas 94 y 95 con los que predice la simulación termodinámica, figura 199, y los de bibliografía [30, 31, 161, 193] para la composición 94% Zn-6%Al.
Observando los resultados expuestos en el diagrama de fases de la figura 204 se obtienen las siguientes conclusiones.

- Las composiciones que se marcan con los símbolos ⭕, ⚫, ▲, ▲ son bastante dispares ya que con los evidencias que se obtienen experimentalmente en la caracterización microestructural, dendritas con la misma morfología que las que se observaron para la aleación 85%Zn-15%Al, se concluye que la aleación en estudio 94%Zn-6%Al tiene una composición hipoeutéctica. En cambio los datos bibliográficos de Murray [161, 193] muestran una composición exactamente eutéctica y los obtenidos mediante simulación termodinámica con Thermo-Calc [188] y los bibliográficos de Gröbner [30, 31], muestran ambos composiciones hipereutécticas.

- En cuanto a los datos de temperatura para las reacciones eutectoide y eutéctica, la única diferencia apreciable entre todos los datos es que en los ensayos térmicos experimentales se ha obtenido un valor de temperatura ligeramente superior al resto, de unos dos grados, este hecho ya se ha comentado anteriormente.
5.12 Simulación termodinámica de la aleación 94%Zn-6%Al + Adiciones de Bi.

Una vez caracterizada la aleación base 94%Zn-6%Al y comparados y discutidos sus resultados con los obtenidos en la simulación termodinámica [188] y en la bibliografía [30, 31, 161, 193], se pasa a estudiar el efecto de la adición de bismuto, tanto en la microestructura, como en las reacciones invariants que tiene lugar y principales cambios de fases.

En la tabla 96 se resumen todas las composiciones de las aleaciones que se van a caracterizar en este apartado.

Tabla 96. Composiciones de las aleaciones ternarias Zn-Al-Bi que se van a estudiar en este apartado.

<table>
<thead>
<tr>
<th>%Peso Zn</th>
<th>%Peso Al</th>
<th>%Peso Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>92,2</td>
<td>5,9</td>
<td>2,0</td>
</tr>
<tr>
<td>90,4</td>
<td>5,8</td>
<td>3,8</td>
</tr>
<tr>
<td>88,7</td>
<td>5,7</td>
<td>5,7</td>
</tr>
<tr>
<td>87,0</td>
<td>5,6</td>
<td>7,4</td>
</tr>
<tr>
<td>85,5</td>
<td>5,5</td>
<td>9,1</td>
</tr>
<tr>
<td>83,9</td>
<td>5,4</td>
<td>10,7</td>
</tr>
<tr>
<td>82,5</td>
<td>5,3</td>
<td>12,3</td>
</tr>
<tr>
<td>81,0</td>
<td>5,2</td>
<td>13,8</td>
</tr>
<tr>
<td>79,7</td>
<td>5,1</td>
<td>15,3</td>
</tr>
<tr>
<td>78,3</td>
<td>5,0</td>
<td>16,7</td>
</tr>
<tr>
<td>72,3</td>
<td>4,6</td>
<td>23,1</td>
</tr>
<tr>
<td>67,1</td>
<td>4,3</td>
<td>28,6</td>
</tr>
<tr>
<td>62,7</td>
<td>4,0</td>
<td>33,3</td>
</tr>
<tr>
<td>58,8</td>
<td>3,8</td>
<td>37,5</td>
</tr>
</tbody>
</table>

Se van a estudiar 14 aleaciones ternarias, partiendo de la aleación base 94%Zn-6%Al y añadiendo sucesivas cantidades de bismuto: 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 30%, 40%, 50% y 60%.

Antes de comenzar con la caracterización microstructural, se realizan unas simulaciones termodinámicas del diagrama ternario Zn-Al-Bi, a las temperaturas de 379°C, 300°C 270°C y 240°C, con el fin de tener una aproximación acerca de las fases que van a estar presentes justo antes de las reacciones invariants que tienen lugar en dicho sistema.
En la figura 205 se muestra el diagrama ternario Zn-Al-Bi correspondiente a la isoterma a 379ºC.

De acuerdo a la bibliografía [30, 31], a la temperatura de 376ºC tiene lugar la reacción monotéctica ternaria:

\[L' \leftrightarrow L'' + \text{Al}(\text{fcc-}\alpha') + \text{Zn}(\text{hcp-}\beta) \]

por tanto el diagrama ternario de la figura 205 muestra las fases presentes justo antes de que tenga lugar dicha reacción, y son las fases líquidas \(L' \) y \(L'' \) y la fase sólida \(\text{Zn}(\text{hcp-}\beta) \), que ha comenzado a precipitar.

En la figura 206 se muestra la isoterma a 300ºC, una temperatura intermedia entre la reacción monotéctica y la eutectoide ternaria.

Figura 205. Isoterma a 379ºC, justo por encima de la transformación Monotéctica [188].

De acuerdo a la bibliografía [30, 31], a la temperatura de 376ºC tiene lugar la reacción monotéctica ternaria: \(L' \leftrightarrow L'' + \text{Al}(\text{fcc-}\alpha') + \text{Zn}(\text{hcp-}\beta) \), por tanto el diagrama ternario de la figura 205 muestra las fases presentes justo antes de que tenga lugar dicha reacción, y son las fases líquidas \(L' \) y \(L'' \) y la fase sólida \(\text{Zn}(\text{hcp-}\beta) \), que ha comenzado a precipitar.

En la figura 206 se muestra la isoterma a 300ºC, una temperatura intermedia entre la reacción monotéctica y la eutectoide ternaria.

Figura 206. Isoterma a 300ºC, entre la transformación Monotéctica y la Eutectoide [188].
A la temperatura de 300°C, toda la fase líquida L' se ha convertido en las fases $Al(fcc-\alpha')$ y $Zn(hcp-\beta)$ y queda aun la otra fase líquida denotada como L'' que como se ha visto para aleaciones anteriores, prosigue su camino a parte de la otra fase líquida L'.

En el diagrama ternario de la figura 207, se muestra ahora la isoterma 270°C, que es una temperatura justo después de la reacción eutectoide ternaria. En la figura 207 se observa que tras producirse la reacción eutectoide ternaria $Al(fcc-\alpha') \leftrightarrow Zn(hcp-\beta) + Al(fcc-\alpha)$, las fases que se encuentran presentes son las correspondientes a la del zinc y el aluminio y además, queda aun la fase líquida L'' que no ha comenzado a solidificar. En la figura 208 se representa por último la isoterma a 240°C, justo después de la reacción eutéctica ternaria.

Figura 207. Isoterma a 270°C, entre la transformación Eutectoide y Eutéctica [188].

Figura 208. Isoterma a 240°C después de la transformación Eutéctica [188].
A la temperatura de 256ºC, tiene lugar la reacción eutéctica ternaria, mediante la cual la fase líquida L'' se transforma en las fases Zn(hcp-β), Al(fcc-α) y Bi(romb). A partir de esta temperatura ya no tienen lugar más cambios de fases en el sistema ternario Zn-Al-Bi.

En las figuras 209 y 210 se representan para cada una de las aleaciones que se van a estudiar en este apartado, cuyas composiciones se muestran en la tabla 96, la evolución de las fases presentes con la temperatura para cada una de ellas.

Figura 209. Obtención mediante Thermo-Calc [188] de la evolución de la formación de las fases para la aleación 94%Zn-6%Al con contenidos crecientes de bismuto.
Figuras 210. Obtención mediante Thermo-Calc [188] de la evolución de la formación de las fases para la aleación 94%Zn-6%Al con contenidos crecientes de bismuto.
Observando en global las curvas de las figuras 209-210 y al igual que ha sucedido en las aleaciones anteriormente estudiadas de composición 20%Zn-80%Al, 40%Zn-60%Al y 85%Zn-15%Al, con la adición del bismuto aparece un segundo líquido, denotado como L'', rico en bismuto.

Observando las gráficas de las figuras 209 y 210 de derecha a izquierda, el camino de solidificación que siguen ambos líquidos es el mismo que para las aleaciones anteriores, a bajas adiciones de bismuto (2%-30%), el líquido L' rico en Zn y Al, es mayoritario frente al rico en bismuto, L'' y conforme aumenta la adición del mismo, es el líquido L'' el que pasa a ser mayoritario. Conforme va disminuyendo la temperatura, la fracción molar de L' disminuye y en cambio la de L'' aumenta.

A medida que la temperatura desciende, se llega al punto donde se produce el inicio de la precipitación de la fase Zn(hcp-β) (línea azul celeste), aunque experimentalmente se ha visto (imágenes de la figuras 200 y 201) que la aleación base de la que se parte es hipoeutéctica, la simulación [188] está diciendo que es hipereutéctica. Cuando se realice la caracterización microestructural de las aleaciones con adición de bismuto, se verá cual es la microestructura de las diferentes aleaciones ternarias. La temperatura a la cual comienza a precipitar la fase Zn(hcp-β) es de 389ºC y es la misma para todas las aleaciones, y si la comparamos con la aparición de dicha fase en el material base 397ºC, se observa que la adición de bismuto provoca que la fase Zn(hcp-β) comience a solidificar a temperaturas más bajas. Como se observa en las diferentes gráficas, el inicio de la precipitación de la fase Zn(hcp-β) coincide lógicamente con el descenso en la composición del líquido L', puesto que se está consumiendo dicho líquido en la formación de la fase Zn(hcp-β).

Conforme sigue disminuyendo la temperatura, la fracción molar de Zn(hcp-β) sigue aumentando hasta llegar a los 370ºC, que es cuando tiene lugar la transformación monotéctica $L' \leftrightarrow L'' + Al(fcc-\alpha') + Zn(hcp-\beta)$, mediante la cual, solidifica todo el líquido inicial L' por formación de las fases Al(fcc-\alpha) y Zn(hcp-β). Esta reacción se produce en los espacios interdendríticos de la fase primaria solidificada Zn(hcp-β). En la tabla 97 se muestran las composiciones de las fases en dicha transformación para las principales adiciones de bismuto: 10%, 20%, 30%, 40%, 50% y 60%.
Tabla 97. Variación de la composición de las fases durante la transformación monotética.

<table>
<thead>
<tr>
<th>FRACCIONES MOLARES</th>
<th>Aleación</th>
<th>L’</th>
<th>L''</th>
<th>Al(fcc-α’)</th>
<th>Zn(hcp-β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10%Bi</td>
<td>0,28</td>
<td>0,13</td>
<td>0,08</td>
<td>0,78</td>
<td></td>
</tr>
<tr>
<td>+20%Bi</td>
<td>0,21</td>
<td>0,24</td>
<td>0,06</td>
<td>0,69</td>
<td></td>
</tr>
<tr>
<td>+30%Bi</td>
<td>0,19</td>
<td>0,33</td>
<td>0,05</td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>+40%Bi</td>
<td>0,15</td>
<td>0,41</td>
<td>0,04</td>
<td>0,54</td>
<td></td>
</tr>
<tr>
<td>+50%Bi</td>
<td>0,11</td>
<td>0,48</td>
<td>0,03</td>
<td>0,48</td>
<td></td>
</tr>
<tr>
<td>+60%Bi</td>
<td>0,08</td>
<td>0,54</td>
<td>0,02</td>
<td>0,43</td>
<td></td>
</tr>
</tbody>
</table>

La columna correspondiente a la fase L’ muestra la composición justo antes de que se produzca la reacción monotética y las columnas de las fases Al(fcc-α’) y Zn(hcp-β), las composiciones justo después de la misma. La fase L’’ aunque no participa en dicha reacción, se muestra en la tabla 97 porque es una fase que se encuentra presente aun en la muestra que esta solidificando.

Observando las gráficas de las figuras 209 y 210, correspondientes a las principales adiciones de bismuto, la participación del aluminio en la transformación monotética es escasa, ya que su fracción molar es muy pequeña, por debajo de 0,2. En cuanto a la fase líquida L’’, rica en bismuto, aumenta lógicamente su composición con la adición de bismuto, y por tanto, cada vez se ve más favorecida la transformación eutéctica ternaria que deriva exclusivamente de esta fase.

Una vez transcurrida la reacción monotética, y conforme sigue disminuyendo la temperatura, en las gráficas de las figuras 209 y 210 se observa que las composiciones de las fases Al(fcc-α’) y Zn(hcp-β) apenas varían, el único hecho a destacar es el pequeño descenso de L’’ que se va registrando debido a que en él, está empezando a solidificar la fase Zn(hcp-β) en forma de espigas negras, como se ha visto en aleaciones anteriores, [figura 171, imagen b); figura 186, imagen b)].

Entre la transformación monotética y la eutectoide ternarias, la composición del aluminio alcanza sus mayores valores, aun participando poco debido a la pequeña concentración de partida. Además esta fase se va localizar formado parte de la microestructura monotética situada en los espacios interdendríticos.

Conforme sigue disminuyendo la temperatura, a 277,63°C se llega a la transformación eutectoide ternaria mediante la cual, la fase Al(fcc-α’) se transforma en las fases Al(fcc-α) y Zn(hcp-β): \(\text{Al}(\text{fcc}-\alpha') \leftrightarrow \text{Al}(\text{fcc}-\alpha) + \text{Zn}(\text{hcp}-\beta) \).
En la tabla 98 se resumen las composiciones para las fases que participan en la transformación eutectoide.

Tabla 98. Variación de la composición de las fases durante la transformación eutectoide.

<table>
<thead>
<tr>
<th>FRACCIONES MOLARES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleación</td>
</tr>
<tr>
<td>+10%Bi</td>
</tr>
<tr>
<td>+20%Bi</td>
</tr>
<tr>
<td>+30%Bi</td>
</tr>
<tr>
<td>+40%Bi</td>
</tr>
<tr>
<td>+50%Bi</td>
</tr>
<tr>
<td>+60%Bi</td>
</tr>
</tbody>
</table>

Los datos de fracciones molares de la tala 98 muestran que el aluminio es la fase que menos participa, siendo prácticamente despreciable su composición. Tras la transformación eutectoide, la fase $\text{Zn(hcp-}\beta)$ es la mayoritaria y el líquido L'' como solidifica por un camino diferente al de la otra fase líquida L', aun no ha comenzado a solidificar.

Entre la transformación eutectoide y la eutéctica, las composiciones de las fases presentes, $\text{Al(fcc-}\alpha)$, $\text{Zn(hcp-}\beta)$ y L'' se mantienen prácticamente constantes.

Llegada entonces la transformación eutéctica ternaria a 256,42°C, todo el líquido restante L'' solidifica de acuerdo a la reacción $L'' \leftrightarrow \text{Bi(romb)} + \text{Al(fcc-}\alpha) + \text{Zn(hcp-}\beta)$, en la tabla 99 se resumen las composiciones de las fases presentes en esa transformación.

Tabla 99. Variación de la composición de las fases durante la transformación eutéctica ternaria

<table>
<thead>
<tr>
<th>FRACCIONES MOLARES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleación</td>
</tr>
<tr>
<td>+10%Bi</td>
</tr>
<tr>
<td>+20%Bi</td>
</tr>
<tr>
<td>+30%Bi</td>
</tr>
<tr>
<td>+40%Bi</td>
</tr>
<tr>
<td>+50%Bi</td>
</tr>
<tr>
<td>+60%Bi</td>
</tr>
</tbody>
</table>

Observando los datos de composiciones de la tabla 99, la fase líquida L'' se transforma casi por completo en la fase correspondiente al bismuto Bi(romb), el aluminio y el zinc participan en la transformación de forma minoritaria, ya que si comparamos los datos de
Resultados y Discusión

de la tabla 98 para las composiciones de $Al(fcc-\alpha)$ y $Zn(hcp-\beta)$, presentes después de la reacción eutectoide son prácticamente idénticas a las que se encuentran después de la transformación eutéctica ternaria, mostradas en la tabla 99.

5.12.1 94%Zn-6%Al + 2%Bi, caracterización microestructural.

Una vez analizados los resultados obtenidos en la simulación termodinámica para la aleación base 94%Zn-6%Al + adiciones de bismuto, se procede a la caracterización microestructural mediante microscopía óptica y a la realización de los ensayos térmicos correspondientes con el fin de observar, los cambios producidos por las diferentes adiciones de bismuto en las transformaciones que tiene lugar en la aleación 94%Zn-6%Al.

Siguiendo el mismo esquema que para las aleaciones base anteriores, la primera de las adiciones de bismuto realizada es la del 2%, la caracterización de la microestructura de la aleación resultante, realizada mediante microscopía óptica se muestra en la figura 211 y en la figura 212 la microestructura obtenida mediante su caracterización en el SEM.

Figura 211. a) Microestructura obtenida mediante Microscopía óptica a 500 aumentos de la aleación 94%Zn-6%Al + 2%Bi enfriada al aire; b) enfriada en el interior del horno.

Figura 212. Microestructura obtenida mediante Microscopía Electrónica de Barrido de la aleación 94%Zn-6%Al +2%Bi, a) enfriada al aire y b) enfriada en el interior del horno.
En las figuras 211 y 212 se observa la microestructura característica de la aleación 94%Zn-6%Al formada en su mayoría por la matriz monotéctica $[\text{Al(fcc-}\alpha') + \text{Zn(hcp-}\beta])]$ y en menor medida por las dendritas primarias de fase $\text{Al(fcc-}\alpha)$. Al igual que se observaba en las aleaciones anteriores, cuando solidifica la fase líquida L'' rica en bismuto, se localiza preferentemente en los límites de grano, este hecho se ve más claramente en la imagen a) de la figura 212.

De acuerdo a las imágenes mostradas en las figuras 211 y 212 se observa que las aleaciones 94%Zn-6%Al + adiciones de bismuto, van ser hipoeutécticas, ya que las dendritas primarias que se forman siguen siendo de fase $\text{Al(fcc-}\alpha')$, por tanto, los resultados de la simulación termodinámica no predicen los experimentales para esta composición.

Una vez observada la microestructura de la aleación 94%Zn-6%Al + 2%Bi al microscopio óptico y electrónico, se toma una muestra de dicha aleación y se pasa a realizar los ensayos térmicos correspondientes. En las figuras 213 y 214 se representan las curvas térmicas diferenciales correspondientes a las etapas de calentamiento y enfriamiento respectivamente. Se representan en conjunto para poder compararlas unas con otras. A diferencia de las aleaciones anteriores, en este caso se ha comprobado el efecto que tiene en el análisis térmico, el realizar la etapa de calentamiento con una tasa de 5ºC/min y de 10ºC/min. Además, se distingue entre la muestra que ha sido enfriada de forma lenta, muestra A y la enfriada de forma rápida, muestra B.
Las curvas rosa, marrón, azul y negra de la figura 213 muestran dos picos, el primero situado a menor temperatura y que corresponde con la transformación eutéctica ternaria y el segundo, situado a mayor temperatura correspondiente a la reacción monotéctica. El pico correspondiente a la reacción eutéctica ternaria no se ha observado para la aleación 94%Zn-6%Al + 2%Bi, este debería haber aparecido a una temperatura inferior a la del pico de la reacción eutectoide ternaria. En la misma gráfica de la figura 213 se presentan también las curvas correspondientes a las aleaciones base para poder comparar el efecto que tiene en las mismas la adición de bismuto. Las curvas de calentamiento de la figura 213, que han sido obtenidas con una rampa de 5ºC/min (marrón y rosa), presentan picos con un tamaño más pequeño que los correspondientes a las muestras que han sido obtenidas con una tasa de 10ºC/min (negra y azul) y (roja y verde) para las aleaciones base.

En cuanto a las curvas de la etapa de enfriamiento que se muestran en la figura 214, hay que destacar el hecho de la aparición de un pequeño hombro unido al primer pico que se obtiene correspondiente con la reacción monotéctica. Este pequeño hombro corresponde con el inicio de la solidificación de la aleación por formación de la fase Al(fcc-α'). El segundo pico que se obtiene en la etapa de enfriamiento corresponde con la transformación eutectoide ternaria.

A modo de resumen, en las tablas 100 y 101, se recogen todos los datos de temperatura que se obtienen en las diferentes curvas de las figuras 213 y 214.

Tabla 100. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico, DTA, de la aleación de composición 94%Zn-6%Al + 2%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 213)</th>
<th>94%Zn-6%Al + 2% de Bismuto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
</tr>
<tr>
<td>BaseA 5ºC/min</td>
<td>380,87</td>
<td>385,06</td>
</tr>
<tr>
<td>BaseB 5ºC/min</td>
<td>380,77</td>
<td>385,68</td>
</tr>
<tr>
<td>Muestra A 5ºC/min</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra B 5ºC/min</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A 10ºC/min</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra B 10ºC/min</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Tabla 101. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico, DTA, de la aleación de composición 94%Zn-6%Al + 2%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 214)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>BaseA.5ºC/min</td>
<td>378,69</td>
</tr>
<tr>
<td>BaseB.5ºC/min</td>
<td>378,69</td>
</tr>
<tr>
<td>Muestra A</td>
<td>383,39</td>
</tr>
<tr>
<td>5ºC/min</td>
<td></td>
</tr>
<tr>
<td>Muestra B</td>
<td>377,61</td>
</tr>
<tr>
<td>5ºC/min</td>
<td></td>
</tr>
<tr>
<td>Muestra A</td>
<td>383,02</td>
</tr>
<tr>
<td>10ºC/min</td>
<td></td>
</tr>
<tr>
<td>Muestra B</td>
<td>375,08</td>
</tr>
<tr>
<td>10ºC/min</td>
<td></td>
</tr>
</tbody>
</table>

Los datos de temperaturas de la tabla 100, correspondientes a la etapa de calentamiento muestran los siguientes aspectos a destacar.

- No se detecta el pico correspondiente a la reacción eutéctica ternaria, por lo que aparecen únicamente las temperaturas relativas a los picos de la reacción eutéctica binaria: \(L \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) \), (curvas roja y verde).

- En relación a la temperatura de inicio de la reacción eutectoide ternaria, se ha observado que es muy similar a la temperatura de inicio de la reacción eutectoide binaria, ya que como se ha comentado para las aleaciones anteriormente estudiadas, la reacción eutectoide ternaria deriva casi exclusivamente de la binaria. Y entre la muestras calentada con una velocidad de 5ºC/min y 10ºC/min, existe una diferencia de 3ºC, y de acuerdo a la bibliografía [30, 193, 197], las temperaturas obtenidas con la velocidad de 5ºC/min son las que más se aproximan, coincidiendo también con la temperatura de 277,63ºC que predice Thermo-Calc [188].

- En cuanto a los datos de temperatura de la reacción monotéctica, es la muestra que ha sido calentada a 5ºC/min para la que se obtiene unas temperaturas más cercanas a la bibliografía de 376ºC [30, 31].

240
La columna correspondiente a las temperaturas del proceso de fusión se encuentra vacía porque no se han detectado los picos correspondientes a dicho proceso en la etapa de calentamiento del ensayo térmico, este hecho es debido a la proximidad entre ambos procesos que provoca que solo se obtenga un único pico que engloba a ambos.

Los datos de la tabla 101, muestran de forma resumida las temperaturas asociadas a los picos obtenidos en la etapa de enfriamiento del ensayo térmico diferencial, DTA, para las muestra de las aleaciones base 94%Zn-6%Al y las aleaciones base con adición del 2%Bi. De estos datos de temperatura hay que destacar los siguientes puntos.

- Tampoco se detecta el pico correspondiente a la reacción eutéctica ternaria, debido a que esta o no tiene lugar para la composición en estudio o se da en tan poco medida que el equipo no es capaz de detectarla.

- Tanto las temperaturas de los picos de la reacción eutectoide ternaria, como las de la reacción monotéctica se desvían en torno a los 20°C con las que se recogen en bibliografía [30, 31] de 278,1°C y 376°C respectivamente y las obtenidas mediante simulación con Thermo-Calc [188], de 277,63°C y 370,97°C respectivamente. Este hecho es debido a la propia inercia y sensibilidad del equipo de medida que provoca este retraso en la detección de las temperaturas.

- Los datos de temperatura del inicio de solidificación muestran un comportamiento similar para las muestras tipo A, cuya temperatura de solidificación se sitúa en torno a los 383°C y las muestras tipo B entre 377-375°C. Si se comparan estas temperaturas con las obtenidas en la simulación termodinámica con Thermo-Calc [188] de la figura 209, se observa una diferencia de entre 10-15°C por debajo, por tanto, los datos de temperatura que predice la simulación termodinámica no coinciden con los obtenidos experimentalmente.
5.12.2 94%Zn-6%Al + 4%Bi, caracterización microestructural.

La siguiente adición de bismuto que se realiza a la aleación base 94%Zn-6%Al es la del 4%. Los resultados de la caracterización de la microestructura de la aleación resultante realizada mediante microscopía óptica se muestran en la figura 215.

![Figura 215. a) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 94%Zn-6%Al + 4%Bi enfriada al aire; b) enfriada en el interior del horno.](image)

En la imagen a) de la figura 215 se observa que la fase líquida $L^\prime\prime$, rica en bismuto, una vez solidificada se localiza en los bordes de grano y que toda la microestructura es monotéctica ternaria. En la imagen b) se observa claramente los límites de grano y en esta caso, también la presencia de dendritas primarias de fase Al($fcc-a'$), la presencia del 4% bismuto no se ve tan claro como en la imagen a), aunque éste se sigue localizando en los bordes de grano adheridos a las dendritas de fase Al($fcc-a'$). Las imágenes de la figura 216 obtenidas mediante SEM, muestran la microestructura de la aleación 94%Zn-6%Al + 4%Bi.

![Figura 216. Microestructura obtenida mediante Microscopía Electrónica de Barrido de la aleación 94%Zn-6%Al +4%Bi a) enfriada al aire y b) enfriada en el interior del horno.](image)
El aspecto de la microestructura de las imágenes 216 es muy similar a la obtenida mediante microscopía óptica. Lo único a destacar es que en la imagen b) de la figura 216 se observa en las laminillas de color oscuro que forman parte del agregado monotéctico que ha tenido lugar en ellas la transformación eutectoide ternaria: \(\text{Al(fcc-}\alpha') \leftrightarrow \text{Al(fcc-}\alpha) + \text{Zn(hcp-}\beta) \).

Una vez observada la microestructura de la aleación 94\%Zn-6\%Al +4\%Bi al microscopio óptico y electrónico, se realiza el ensayo térmico, DTA. Las curvas térmicas obtenidas en la etapa de calentamiento y en la etapa de enfriamiento para las muestras tipo A y tipo B, se reflejan en las figuras 217 y 218. Y los datos de temperatura correspondientes a los picos aparecidos en las curvas de calentamiento y enfriamiento, se muestran en las tablas 102 y 103.

![Figura 217. Análisis térmico diferencial de la etapa de calentamiento de la aleación 94\%Zn-6\%Al + 4\%Bi.](image1)

![Figura 218. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 94\%Zn-6\%Al + 4\%Bi.](image2)

Tabla 102. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico, DTA, de la aleación de composición 94\%Zn-6\%Al + 4\%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 217)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>BaseA.5°C/min</td>
<td>380,87</td>
</tr>
<tr>
<td>BaseB.5°C/min</td>
<td>380,76</td>
</tr>
<tr>
<td>Muestra A 5°C/min</td>
<td>-</td>
</tr>
<tr>
<td>Muestra B 5°C/min</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A 10°C/min</td>
<td>-</td>
</tr>
<tr>
<td>Muestra B 10°C/min</td>
<td>-</td>
</tr>
</tbody>
</table>
Observando los datos de temperatura de las tablas 102 y 103, no se obtienen cambios significativos con respecto a la aleación anterior con adición del 2%Bi. El pico correspondiente a la transformación eutéctica ternaria no se detecta, ni en la etapa de calentamiento ni en la de enfriamiento. Las temperaturas del proceso de fusión tampoco se obtienen y en cuanto a la reacción eutectoide ternaria, sus temperaturas aunque muy próximas a las de la reacción eutéctica binaria, se obtienen ligeramente superiores, de acuerdo a los datos extraídos de la bibliografía [30, 31]. Las temperaturas obtenidas para la transformación monotéctica ternaria \(L' \rightleftharpoons L'' + Al(fcc-\alpha') + Zn(hcp-\beta) \), no siguen ninguna tendencia, lo único es que para las muestras calentadas con una velocidad de 10\(^\circ\)C/min, los máximos de los picos de dichas transformación se obtienen ligeramente a mayores temperaturas, 391\(^\circ\)C, frente a los 385-387\(^\circ\)C de las calentadas con una velocidad de 5\(^\circ\)C/min.

En cuanto a los datos de temperatura obtenidos en la etapa de enfriamiento, las correspondientes a las reacciones eutectoide ternaria y monotéctica se obtienen con un desfase de 20\(^\circ\)C y 10\(^\circ\)C respectivamente comparadas con las de la bibliografía [30, 31] y las obtenidas, mediante simulación termodinámica con Thermo-Calc [188].

Por último, las temperaturas de solidificación por formación de la fase \(Al(fcc-\alpha') \) obtenidas experimentalmente en el ensayo térmico para las aleaciones base y las aleaciones con adición de Bi mostradas en la tabla 103, son 19\(^\circ\)C y 15\(^\circ\)C inferiores a las temperaturas obtenidas mediante simulación con Thermo-Calc [188] respectivamente,
pero siguen la misma tendencia, es decir, que para las aleaciones base 94%Zn-6%Al, el proceso de solidificación comienza a una temperatura mayor que para las aleaciones con bismuto, por tanto, la adición de bismuto adelanta el proceso de solidificación de las aleaciones 94%Zn-6%Al.

5.12.3 94%Zn-6%Al + 6%Bi, caracterización microestructural.

En las imágenes de las figura 219, se muestran el aspecto de la microestructura de la aleación 94%Zn-6%Al con la adición de un 6%Bi, caracterizada mediante microscopía óptica.

![Figura 219. a) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 94%Zn-6%Al + 6%Bi enfriada al aire; b) enfriada en el interior del horno.](image)

Al igual que se ha observado en las aleaciones anteriormente estudiadas de composiciones 20%Zn-80%Al, 40%Zn-60%Al y 85%Zn-15%Al, en las imágenes de la figura 219 se observa que la muestra que ha sido enfriada de forma rápida al aire presenta una microestructura menos desarrollada que la muestra tipo A que ha sido enfriada lentamente en el interior del horno. En la muestra tipo A se observa de forma más clara el agregado monotéctico, las dendritas primarias de solidificación de fase $\text{Al}(\text{fcc-}$-$\alpha')$ de color oscuro y la última fase en solidificar L'', situada preferentemente en los límites de grano. La imagen b) de la figura 219 correspondiente a la muestra tipo B enfriada al aire, apenas se distinguen las dendritas primarias de solidificación y los límites de grano.

En las imágenes de la figura 220 se muestran ahora la microestructura de la aleación 94%Zn-6%Al + 6%Bi vista al microscopio electrónico de barrido, SEM.
En la imagen a) de la figura 220, correspondiente a la muestra enfriada al aire se observa la localización preferencial de la fase L'' rica en Bi en los bordes de grano, las dendritas de fase $Al(fcc-\alpha')$ y el agregado monotéctico, que en función de la disposición de los granos la morfología que se observa varía entre laminillas paralelas y laminillas concéntricas de las fases $Al(fcc-\alpha')$ y $Zn(hcp-\beta)$ que componen este agregado monotéctico. En la imagen b) se observa mejor este hecho, ya que se ve un grano central con una disposición concéntrica de las fases $Al(fcc-\alpha')$ y $Zn(hcp-\beta)$ y rodeándole cuatro granos con una disposición diferente de las mismas.

Una vez observada la microestructura de la aleación 94%Zn-6%Al + 6%Bi al microscopio óptico y electrónico, se analiza ahora los resultados obtenidos en el ensayo térmico correspondiente. Las curvas obtenidas en el mismo se muestran en las figuras 221 y 222. A diferencia de las aleaciones anteriores 94%Zn-6%Al + 2%Bi y 94%Zn-6%Al + 4%Bi, en la aleación 94%Zn-6%Al + 6%Bi, actualmente en estudio, no se representan los resultados obtenidos para las aleaciones base, con el fin de observar mejor las curvas obtenidas para las aleaciones con adiciones de bismuto, aunque los datos de temperatura para las aleaciones base sí se reflejarán en las tablas resumen de temperatura correspondientes. De acuerdo con esto, en la figura 221 se muestran las curvas obtenidas en la etapa de calentamiento del ensayo térmicos DTA para las muestras tipo A y tipo B de la aleación 94%Zn-6%Al + 6%Bi, tanto las calentadas a una velocidad de 5°C/min, curvas rosa y marrón, como las calentadas a 10°C/min, curvas azul y negra. El código de colores es el mismo para las curvas obtenidas en la etapa de enfriamiento, mostradas en la figura 222.
A diferencia de la aleación 94%Zn-6%Al con adiciones del 2%Bi y 4%Bi, con la adición del 6% de bismuto aparece un pequeño pico en la etapa de calentamiento en torno a los 251-252°C. Este pico ya se observó en las alecciones anteriormente estudiadas de composiciones 20%Zn-80%Al; 40%Zn-60%Al y 85%-15%Al; y corresponde con la transformación eutéctica ternaria: \[L'' \leftrightarrow Bi(romb) + Zn(hcp-\beta) + Al(fcc-\alpha) \]. Aunque es un pico muy poco intenso ya con un 6% de bismuto, se detecta pero solo en la etapa de calentamiento, en la de enfriamiento se pierde. Los otros dos picos aparecidos en la etapa de calentamiento y enfriamiento corresponden con las reacciones eutectoide y monotéctica ternarias. En las tablas 104 y 105 se resumen todas las temperaturas de cada uno de los picos aparecidos para su análisis en global.

Tabla 104. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico, DTA, de la aleación de composición 94%Zn-6%Al + 6%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 221)</th>
<th>94%Zn-6%Al + 6% de Bismuto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
</tr>
<tr>
<td>Base A, 5ºC/min</td>
<td>380,87</td>
<td>385,06</td>
</tr>
<tr>
<td>Base B, 5ºC/min</td>
<td>380,76</td>
<td>385,68</td>
</tr>
<tr>
<td>Muestra A 5ºC/min</td>
<td>251,42</td>
<td>253,48</td>
</tr>
<tr>
<td>Muestra B 5ºC/min</td>
<td>249,84</td>
<td>252,18</td>
</tr>
<tr>
<td>Muestra A 10ºC/min</td>
<td>252,30</td>
<td>255,01</td>
</tr>
<tr>
<td>Muestra B 10ºC/min</td>
<td>251,37</td>
<td>255,15</td>
</tr>
</tbody>
</table>
Resultados y Discusión

Observando los datos de temperatura de las tablas 104 y 105 se obtienen las siguientes conclusiones.

- La temperatura de inicio de la reacción eutéctica ternaria se sitúa entre los 251°C-252°C, temperaturas inferiores a las de bibliografía de 253,9°C [30, 31] y a las que se obtiene mediante simulación termodinámica 256,42°C [188]. En cambio, son muy similares a las temperaturas obtenidas para dicha reacción en las aleaciones que han sido estudiadas en apartados anteriores (20%Zn-80%Al; 40%Zn-60%Al y 85%-15%Al). En la etapa de enfriamiento no se detecta el pico correspondiente a esta transformación, debido posiblemente a la sensibilidad e inercia del equipo.

- Con respecto a los datos obtenidos de temperatura de la transformación eutectoide ternaria, son ligeramente superior a los de la reacción eutectoide binaria, concordando con la bibliografía 278,1°C→277,2°C [30, 31] y con los resultados de Thermo-Calc 277,63°C→277,23°C [188]. En la etapa de enfriamiento las temperaturas mantienen el mismo desfase que el comentado para las aleaciones anteriores con adiciones del 2%Bi y 4%Bi.

- En cuanto a la transformación monotéctica ternaria, que es la que tiene lugar a la mayor temperatura, se obtienen temperaturas muy próximas entre sí para las muestras tipo A y para la tipo B, siendo estas últimas ligeramente superiores. Para esta transformación las temperaturas de las muestras tipo A se ajustan más
a las de la bibliografía de 376°C [30, 31]. Y en cuanto a la temperatura que predice la simulación termodinámica de 370,97°C [188] nada tiene que ver con la que se obtiene experimentalmente, existiendo una diferencia de 6°C. En la etapa de enfriamiento se mantiene el desfase en los datos de temperatura de unos 10°C, incluso de 15°C, para la muestra tipo B.

5.12.4 94%Zn-6%Al + 8%Bi, caracterización microestructural.

La siguiente adición que se realiza a la aleación base de partida 94%Zn-6%Al es de un 8% de bismuto. Las imágenes que se muestran en la figura 223 y 224, corresponden con su caracterización mediante microscopía óptica.

![Figura 223.](image)

En la imagen a) de la figura 223 se observa por primera vez para esta aleación y de forma clara la microestructura característica del eutéctico ternario y que se ha observado para las aleaciones anteriores. Esta microestructura se caracteriza por unas espigas de color negro sobre un fondo de color blanco [30, 31].

En la imagen b) se observa la microestructura característica que se forma tras la transformación monotéctica y que se compone de laminas alternas de las fases Al(fcc-α’) y Zn(hcp-β). Esta microestructura aparece en la zona superior del lingote de solidificación y la zona del eutéctico ternario en la parte inferior del mismo.

En las imágenes de la figura 224, se muestra el aspecto superficial de la microestructura de otra zona del lingote de solidificación de la aleación 94%Zn-6%Al + 8%Bi.
En la figura 224 se observan dos zonas diferentes de la muestra 94%Zn-6%Al + 8%Bi. En la imagen a) se observan dendritas de fase $Al(fcc-\alpha')$ rodeadas del agregado monotéctico, y en la imagen b) se observan dendritas de fase $Zn(hcp-\beta)$, esta zona es la más cercana al eutéctico ternario, y en ella se ha producido una inversión de las dendritas. En la figura 225 se muestra un esquema del fenómeno producido.

![Dendritas de fase $Al(fcc-\alpha')$](image1.png)

![Dendritas de fase $Zn(hcp-\beta)$](image2.png)

Figura 224. a) y b) Microestructuras obtenidas mediante Microscopía óptica a 100 aumentos de la aleación 94%Zn-6%Al + 8%Bi enfriada en el interior del horno.

En la figura 224 se observan dos zonas diferentes de la muestra 94%Zn-6%Al + 8%Bi. En la imagen a) se observan dendritas de fase $Al(fcc-\alpha')$ rodeadas del agregado monotéctico, y en la imagen b) se observan dendritas de fase $Zn(hcp-\beta)$, esta zona es la más cercana al eutéctico ternario, y en ella se ha producido una inversión de las dendritas. En la figura 225 se muestra un esquema del fenómeno producido.

![Esquema de las diferentes zonas aparecidas en el lingote de solidificación de la muestra 94%Zn-6%Al + 8%Bi](image3.png)

Figura 225. Esquema de las diferentes zonas aparecidas en el lingote de solidificación de la muestra 94%Zn-6%Al + 8%Bi.

Las dendritas de fase $Al(fcc-\alpha')$ deberían haber aparecido a lo largo de toda la muestra excepto en la parte inferior, que es donde se ha formado la microestructura del eutéctico ternario proveniente de las segunda fase líquida L'' y que sigue un camino diferente de solidificación a la primera fase líquida L. Conforme descendemos por lingote de solidificación la composición en zinc ha tenido que aumentar para que se hayan formado las dendritas de la fase $Zn(hcp-\beta)$. Las imágenes de las figuras 224 y 225 corresponden con la muestra tipo A de la aleación 94%Zn-6%Al + 8%Bi que ha sido enfriada de forma lenta en el interior del horno, tiempo suficiente para que puedan tener lugar irregularidades durante el proceso de solidificación.
Una vez vista la microestructura de la aleación 94%Zn-6%Al + 8%Bi al microscopio óptico, se toman un par de muestras de la misma y se realizan los ensayos térmicos correspondientes. En las figuras 226 y 227 se muestran las curvas de las etapas de calentamiento y enfriamiento respectivamente.

En las curvas de la etapa de calentamiento mostrada en la figura 226 se detectan los tres picos correspondientes a la transformaciones eutéctica, eutectoide y monotéctica ternarias, y en la etapa de enfriamiento de la figura 227 se pierde el pico de la reacción eutéctica ternaria, excepto para las muestras tipo B. En las tablas 106 y 107 se resumen las temperaturas obtenidas de la integración de todos los picos obtenidos en ambas etapas junto con el valor máximo de temperatura para cada uno de ellos.

![Figura 226. Análisis térmico diferencial de la etapa de calentamiento de la aleación 94%Zn-6%Al + 8%Bi.](image)

![Figura 227. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 94%Zn-6%Al + 8%Bi.](image)

Tabla 106. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico, DTA, de la aleación de composición 94%Zn-6%Al + 8%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 226)</th>
<th>Dat...</th>
<th>Dat...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
<td>Monotéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>BaseA 5°C/min</td>
<td>380,87</td>
<td>385,06</td>
<td>279,64</td>
</tr>
<tr>
<td>BaseB 5°C/min</td>
<td>380,76</td>
<td>385,68</td>
<td>279,71</td>
</tr>
<tr>
<td>Muestra A 5°C/min</td>
<td>251,99</td>
<td>254,26</td>
<td>279,12</td>
</tr>
<tr>
<td>Muestra B 5°C/min</td>
<td>252,27</td>
<td>254,53</td>
<td>278,72</td>
</tr>
<tr>
<td>Muestra A 10°C/min</td>
<td>253</td>
<td>256,47</td>
<td>281,32</td>
</tr>
<tr>
<td>Muestra B 10°C/min</td>
<td>252,80</td>
<td>256,05</td>
<td>280,24</td>
</tr>
</tbody>
</table>
Del ensayo térmico, DTA, realizado a las muestras de la aleación 94%Zn-6%Al + 8%Bi hay que destacar los resultados obtenidos en la temperatura de la reacción eutéctica ternaria, 252ºC-253ºC, 1-2ºC superior a la temperatura obtenida para las aleaciones ternarias estudiadas hasta el momento. Este hecho coincide con que en la caracterización microestructural de dicha aleación, se ha observado la microestructura característica obtenida tras la reacción eutéctica ternaria \[30, 31\]. Estos resultados coinciden con los obtenidos para las aleaciones 40%Zn-60%Al + 60%Bi, 85%Zn-15%Al + 18%Bi y 85%Zn-15%Al + 60%Bi.

Para la reacción monotéctica ternaria también se observan cambios con respecto a las aleaciones anteriores, ya que se obtienen entre 2-3ºC por encima y se alejan por tanto de las temperaturas obtenidas mediante Thermo-Calc \[188\] y las extraídas de la bibliografía \[30, 31\].

En el proceso de solidificación se ha observado en concreto para las muestras tipo A, que dicho proceso comienza a mayores temperaturas, incluso de hasta de 10ºC si se compararan con las aleaciones anteriores de composiciones 94%Zn-6%Al + 2%Bi, 94%Zn-6%Al + 4%Bi y 94%Zn-6%Al + 6%Bi.

Todos estos cambios se han observado para las muestras tipo A, que son las que se enfrian de forma lenta y es en ellas donde se ha observado la microestructura eutéctica ternaria, es lógico también, que las diferencias observadas se detecten en estas muestras.
5.12.5 94\%Zn-6\%Al + 10\%Bi, caracterización microestructural.

En las imágenes de la figura 228 se muestra la microestructura de la aleación base con la adición de un 10\% de bismuto.

![Figura 228. a) Microestructura obtenida mediante Microscopía óptica a 500 aumentos de la aleación 94\%Zn-6\%Al + 10\%Bi enfriada en el interior del horno, b) detalle de la microestructura eutéctica ternaria.]

En la imagen b) de la figura 228 se observa que para esta composición también se obtiene la microestructura característica del eutéctico ternario. La morfología en forma de espigas de color negro correspondientes a la fase rica en zinc sobre la fase rica en bismuto de color claro, se han observado en otros sistemas como el formado por Zn-Fe-Bi [198]. En la imagen a) de la figura 228, y al igual que se ha venido observando en las aleaciones anteriores, el líquido L” solidificado rico en bismuto se localiza preferentemente en los límites de grano y adheridos a la fase Al(fcc-\(\alpha\)), de color más oscuro en las imágenes. En esta imagen también se observa el agregado monotéctico constituido por las laminillas alternas de las fases Al(fcc-\(\alpha\))’ y Zn(hcp-\(\beta\)). Así pues en la muestra 94\%Zn-6\%Al + 10\%Bi se han observado una zona compuesta por la microestructura eutéctica ternaria y otra zona compuesta por dendritas primarias de fase Al(fcc-\(\alpha\))’ embebidas en el agregado monotéctico Al(fcc-\(\alpha\))’ y Zn(hcp-\(\beta\)). Y aunque no se aprecie en las bandas negras del monotéctico, la fase Al(fcc-\(\alpha\))’ se transforma después en las fases Al(fcc-\(\alpha\)) y Zn(hcp-\(\beta\)) mediante la reacción eutectoide ternaria.

Seguidamente, y una vez finalizada la inspección de la microestructura de la aleación 94\%Zn-6\%Al + 10\%Bi al microscopio óptico, se toman un par de muestras de la misma y se las somete al ensayo térmico diferencial correspondiente. Los resultados obtenidos se muestran en las figuras 229 y 230.
Resultados y Discusión

Al igual que para la aleación del apartado anterior de composición 94%Zn-6%Al + 8%Bi, los resultados del ensayo térmico muestran para la transformación eutéctica ternaria unos picos más intensos para las muestras tipo A, incluso en la etapa de enfriamiento que normalmente no se venía detectando el pico correspondiente a la reacción eutéctica ternaria, si aparece y además con mucha intensidad.

En las tablas 108 y 109 se anotan las temperaturas de inicio y máxima de los tres picos aparecidos por curva.

Tabla 108. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico, DTA, de la aleación de composición 94%Zn-6%Al + 10%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 229)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A 5°C/min</td>
<td>380,87</td>
</tr>
<tr>
<td>Base B 5°C/min</td>
<td>380,76</td>
</tr>
<tr>
<td>Muestra A 5°C/min</td>
<td>253,37</td>
</tr>
<tr>
<td>Muestra B 5°C/min</td>
<td>251,22</td>
</tr>
<tr>
<td>Muestra A 10°C/min</td>
<td>256,01</td>
</tr>
<tr>
<td>Muestra B 10°C/min</td>
<td>252,06</td>
</tr>
</tbody>
</table>

Figura 229. Análisis térmico diferencial de la etapa de calentamiento de la aleación 94%Zn-6%Al + 10%Bi.

Figura 230. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 94%Zn-6%Al + 10%Bi.

94%Zn-6%Al + 10% de Bismuto
Resultados y Discusión

Observando los datos de temperatura de la tabla 108, y como era de esperar, los resultados de la reacción eutéctica ternaria son muy similares a los obtenidos en la aleación 94%Zn-6%Al + 8%Bi, en la que al microscopio óptico se observa la microestructura eutéctica ternaria, como en la actual aleación. Este hecho provoca que las temperaturas de dicha reacción se aproximen casi por completo a las de bibliografía [30, 31], y entra las muestra tipo A y las B son las A las que más ajustan su temperatura a la extraída de la bibliografía. Para las reacciones eutectoide y monotéctica, los valores de temperatura que se obtienen son similares a los de la aleación 94%Zn-6%Al + 8%Bi.

Los datos de la etapa de enfriamiento mostrados en la tabla 109 no muestran tampoco cambios significativos comparados con las aleación 94%Zn-6%Al + 8%Bi, excepto que para las muestra tipo A no se obtiene el pequeño hombro unido al pico de la transformación monotéctica y que daba el comienzo de la solidificación de la aleación por formación de la fase Al(fcc-α'). Para las muestra tipo B si se obtiene, y comparadas con las temperaturas de solidificación de la aleación 94%Zn-6%Al + 8%Bi, son ligeramente superiores, es decir que con la adición de un 10%Bi, se retarda mas el comienzo de la solidificación que con la adición del 8%Bi.
5.12.6 94%Zn-6%Al + 12%Bi, caracterización microestructural.

Continuando con las adiciones de bismuto a la aleación base, la siguiente que se realiza es la de un 12% de bismuto. Los resultados de la caracterización microestructural se muestran en las imágenes de la figura 231.

![Figura 231](image)

En la imagen b) de la figura 231, se observa al igual que para las aleaciones 94%Zn-6%Al + adiciones del 8%Bi, 10%Bi, que con la adición del 12%Bi también se detecta en el microscopio óptico la presencia de la microestructura característica de la transformación eutéctica ternaria, formada por espigas ricas en zinc rodeadas de la fase de color claro rica en bismuto.

En la imagen a) se observan las dendritas de fase Al(fcc-α') embebidas en el agregado monotéctico ternario. La fase rica en bismuto se localiza en los límites de grano, al igual que en aleaciones anteriores. En las gráficas de las figuras 232 y 233 se muestran las curvas correspondientes a los ensayos térmicos realizados.

![Figura 232](image)

Figura 232. Análisis térmico diferencial de la etapa de calentamiento de la aleación 94%Zn-6%Al + 12%Bi.

![Figura 233](image)

Figura 233. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 94%Zn-6%Al + 12%Bi.
Y en las tablas 110 y 111 se anotan las temperaturas para cada pico obtenido en el ensayo térmico diferencial.

Tabla 110 y 111. Resumen de las señales térmicas del programa controlado de temperatura para la muestra 94%Zn-6%Al + 12%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 232)</th>
<th>94%Zn-6%Al + 12% de Bismuto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
</tr>
<tr>
<td>BaseA.5°C/min</td>
<td>380,87</td>
<td>385,06</td>
</tr>
<tr>
<td>BaseB.5°C/min</td>
<td>380,76</td>
<td>385,68</td>
</tr>
<tr>
<td>Muestra A 5°C/min</td>
<td>253,81</td>
<td>258,01</td>
</tr>
<tr>
<td>Muestra B 5°C/min</td>
<td>252,41</td>
<td>254,26</td>
</tr>
<tr>
<td>Muestra A 10°C/min</td>
<td>255,23</td>
<td>259,94</td>
</tr>
<tr>
<td>Muestra B 10°C/min</td>
<td>252,99</td>
<td>255,48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 233)</th>
<th>94%Zn-6%Al + 12% de Bismuto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
</tr>
<tr>
<td>BaseA.5°C/min</td>
<td>378,69</td>
<td>371,52</td>
</tr>
<tr>
<td>BaseB.5°C/min</td>
<td>378,69</td>
<td>372,02</td>
</tr>
<tr>
<td>Muestra A 5°C/min</td>
<td>379,78</td>
<td>366,15</td>
</tr>
<tr>
<td>Muestra B 5°C/min</td>
<td>379,78</td>
<td>366,15</td>
</tr>
<tr>
<td>Muestra A 10°C/min</td>
<td>378,69</td>
<td>367,68</td>
</tr>
</tbody>
</table>

Los resultados obtenidos en el ensayo térmico de la muestra 94%Zn-6%Al muestran también valores más altos en la temperatura correspondiente a la transformación eutéctica ternaria. Este hecho coincide justamente con la aparición de la microestructura eutéctica ternaria, que es visible al microscopio óptico en las aleaciones con adiciones del 8%Bi, 10% y ahora con un 12%Bi. Las temperaturas correspondientes a las transformaciones eutectoide y monotéctica son similares a las obtenidas en las aleaciones anteriores.

En general con la tasa de calentamiento de 5°C/min el tamaño de los picos es más pequeño que el obtenido con la de 10°C/min [79-81].
5.12.7 94%Zn-6%Al + 14%Bi, caracterización microestructural.

Para las aleaciones que se van a estudiar en los siguientes apartados cuyas composiciones son: 94%Zn-15%Al + 14%, 16%, 18%, y 20%Bi, se va a seguir una metodología diferente de experimentación. Hasta ahora se partía de la aleación base 94%Zn-6%Al, se le añadía la cantidad de bismuto correspondiente y se fundía a una temperatura superior a la línea de líquidos de 430°C. En el esquema de la figura 234 se muestra el nuevo procedimiento experimental que se va a seguir.

![Esquema del procedimiento experimental](image)

Figura 234. Esquema del procedimiento experimental realizado para las aleaciones de composición 94%Zn-6%Al +14%, 16%, 18% y 20%Bi.

Una vez fundida, homogeneizada y solidificada la aleación 94%Zn-6%Al +14%Bi, se toman dos muestras, una de las cuales va ser fundida de nuevo hasta los 700°C y la otra hasta los 430°C como se ha venido haciendo para todas las aleaciones anteriormente estudiadas. El motivo de fundir la muestra hasta los 700°C es observar si la transformación $L' \leftrightarrow L'' + Al(fcc-\alpha')$ del binario Al-Bi, que tiene lugar a 658°C y de la que deriva la transformación monotéctica ternaria $L' \leftrightarrow L'' + Al(fcc-\alpha') + Zn(hcp-\beta)$, deja algún tipo de huella, ya sea en la microestructura o en el ensayo térmico y que haga saber si el proceso de mezcla del binario 94%Zn-6%Al, con el bismuto para dar el sistema ternario se ha producido correctamente, o bien, se están produciendo procesos de los sistemas binarios de los que deriva dicho ternario.
Resultados y Discusión

A la hora de realizar los análisis térmicos, el de la muestra que ha seguido el proceso normal de fusión a la temperatura de 430°C, va ser como los realizados hasta ahora, es decir una rampa de calentamiento hasta los 550°C seguido de la etapa de enfriamiento. Y para la muestra que ha sido fundida hasta los 700°C, se van hacer dos rampas, una hasta los 710°C para ver si se detecta la transformación $L' \leftrightarrow L'' + Al(fcc-\alpha')$ del binario Al-Bi, que tiene lugar a 658°C y la otra a 550°C, para comparar y ver si hay diferencias.

Previa a la realización de los ensayos térmicos, se caracterizan las muestras mediante microscopía óptica para ver el aspecto de la microestructura. Las imágenes obtenidas para la muestra 94%Zn-6%Al + 14%Bi fundida a 430°C y enfriada en el interior del horno, se muestran en la figura 235.

![Figura 235. a) y b) Microestructuras obtenidas mediante Microscopía óptica a 50 aumentos de la aleación 94%Zn-6%Al + 14%Bi fundida hasta los 430°C y enfriada en el interior del horno.](image)

En las imagen a) de la figura 235 se observan la microestructura característica de este tipo de aleaciones es decir, dendritas primarias de fase $Al(fcc-\alpha')$ rodeadas del agregado monotéctico [$Al(fcc-\alpha') + Zn(hcp-\beta)$]. En la imagen b) por el contrario, se observa la microestructura característica del eutéctico ternario en la parte inferior del lingote de solidificación, y al igual que pasaba en la aleación con la adición de un 8%Bi, se produce una inversión en las dendritas primarias de solidificación cercano a la zona del eutéctico ternario, debido al enriquecimiento en zinc que se produce a medida que nos acercamos a dicha microestructura.
Una vez observadas al microscopio óptico las muestras que han sido fundidas hasta los 430ºC, en la figura 236 se muestran las imágenes obtenidas para la muestra que ha sido fundida hasta los 700ºC y se ha dejado enfriar de forma lenta en el interior del horno.

Figura 236. a) y b) Microestructuras obtenidas mediante Microscopía óptica a 50 aumentos de la aleación 94%Zn-6%Al + 14%Bi fundida hasta los 700ºC y enfriada en el interior del horno.

Observando las imágenes a) y b) de la figura 236 no se observan grandes diferencias entre la muestra que ha sido fundida hasta los 700ºC y la muestra que ha sido fundida hasta los 430ºC. Lo único a destacar es que, en las muestras de 700ºC no se produce inversión de las dendritas primarias de solidificación Al(fcc-α') y las agujas oscuras del eutéctico ternario ricas en zinc, se obtienen con una morfología más alargada y fina.

En las figura 237 se muestran las curvas de la etapa de calentamiento para las tres muestras analizadas: las fundidas hasta los 700ºC y la fundida hasta los 430ºC.

Figura 237. Análisis térmico diferencial de la aleación 94%Zn-6%Al + 14%Bi
En las curvas de la figura 237, se observa que en la muestra que ha sido calentada hasta los 700°C, curva verde, no se obtiene ningún pico pasados los 380°C, es decir que no se produce la transformación \(L' \leftrightarrow L'' + Al(fcc-\alpha') \) a 658°C del sistema binario aluminio-bismuto, ni tampoco se obtiene el pico correspondiente a la transformación \(L' \leftrightarrow L'' + Zn(hcp-\beta) \) a 416°C del sistema binario Bismuto-Zinc, por tanto, la mezcla de la aleación base 94%Zn-6%Al con el bismuto se ha realizado correctamente.

En la figura 238 se muestran ampliadas las curvas de la figura 237 y con el análisis térmico realizado para cada uno de los picos. En la gráfica a) se representan las curvas de la etapa de calentamiento y en la gráfica b), las de enfriamiento.

![Figura 238. Análisis térmico diferencial de la aleación 94%Zn-6%Al + 14%Bi, a) etapa de calentamiento; b) etapa de enfriamiento.](image)

Las curvas verde y azul de la gráfica a), que se corresponden con las muestras que han sido fundidas hasta los 700°C, muestran un pico muy intenso para la reacción eutéctica ternaria comparado con el pico obtenido para la muestra que ha sido fundida hasta la temperatura de 430°C, curva roja, incluso en la etapa de enfriamiento, se obtiene este pico cuando en la mayoría de aleaciones estudiadas hasta ahora no se ha obtenido. Este hecho coincide justo con el cambio en la morfología de la microestructura eutéctica ternaria para las muestras fundidas hasta 700°C mostrada en la figura 236, en la que las espigas ricas en fase Zn(hcp-\beta) se han obtenido más finas y alargadas.

En la tabla 112, se resumen las temperaturas asociadas a los picos de la figura 238.
Resultados y Discusión

Tabla 112. Resumen de los datos de temperatura obtenidos en el ensayo térmico diferencial DTA, para la muestra 94%Zn-6%Al + 14%Bi.

<table>
<thead>
<tr>
<th>Temperatura alcanzada por la muestra en el proceso de fusión</th>
<th>Temperatura máxima del Ensayo DTA</th>
<th>Calentamiento (Fig.238 a)</th>
<th>Enfriamiento (Fig.238b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700°C (Curva Verde)</td>
<td>710°C</td>
<td>253,55</td>
<td>259,32</td>
</tr>
<tr>
<td></td>
<td>278,46</td>
<td>284,60</td>
<td>262,59</td>
</tr>
<tr>
<td></td>
<td>376,01</td>
<td>380,34</td>
<td>365,80</td>
</tr>
<tr>
<td>550°C (Curva Azul)</td>
<td>550°C</td>
<td>253,74</td>
<td>259,77</td>
</tr>
<tr>
<td></td>
<td>279,34</td>
<td>285,30</td>
<td>208,84</td>
</tr>
<tr>
<td></td>
<td>377,85</td>
<td>383,95</td>
<td>367,38</td>
</tr>
<tr>
<td>430°C (Curva Roja)</td>
<td>550°C</td>
<td>251,95</td>
<td>253,81</td>
</tr>
<tr>
<td></td>
<td>278,77</td>
<td>285,08</td>
<td>262,2</td>
</tr>
<tr>
<td></td>
<td>379</td>
<td>381,49</td>
<td>368,13</td>
</tr>
</tbody>
</table>

E: Transformación Eutéctica, **U:** Transformación Eutectoide, **M:** Transformación Monotéctica

Los datos de temperatura muestran que en las curvas donde se han obtenido los picos de las reacciones eutécticas ternarias con mayor intensidad, son más elevadas, en concreto entre 1-2°C, que la muestra que ha sido fundida hasta los 430°C.

La temperatura de la reacción eutectoide ternaria es similar para las tres muestras analizadas y la temperatura monotéctica ternaria para la muestra fundida hasta los 430°C es ligeramente superior a la de las otras dos muestra y se aleja de la temperatura que predice la simulación termodinámica [188] de 370,97°C y la de la bibliografía 376°C [30, 31].

En la etapa de enfriamiento el único hecho a destacar es la detección del pico correspondiente a la reacción eutéctica ternaria. Las temperaturas que se obtienen para esta etapa no coinciden con las de la etapa de calentamiento y por tanto, están muy alejadas de las de bibliografía [30, 31].

5.12.8 94%Zn-6%Al + 16%Bi, caracterización microestructural.

Para la adición de un 16% de bismuto, se sigue el mismo procedimiento que para la adición de un 14%. Las imágenes obtenidas mediante microscopía óptica se muestran en las imágenes de la figura 239.
Las imágenes de la figura 239 muestran microestructura monotéctica ternaria, eutéctica ternaria y dendritas primarias de solidificación de fase Al(fcc-α'). La única diferencia que se aprecia con respecto a la aleación anterior de composición 94%Zn-6%Al + 14%Bi, es que en esta aleación se forma menor cantidad de microestructura eutéctica ternaria.

En las imágenes de la figura 240 se muestran la microestructura de la aleación que ha sido fundida hasta alcanzar la temperatura de 700°C.

La microestructura de la muestra de composición 94%Zn-6%Al + 16%Bi que ha sido fundida hasta los 700°C y posteriormente enfriada en el interior del horno, se ve en la imagen b) de la figura 240, con especial énfasis en las zonas claras ricas en bismuto en los límites de grano.
Una vez realizada la caracterización microestructural mediante microscopía óptica, se realiza el ensayo térmico correspondiente. En la figura 241 se muestran las tres gráficas obtenidas en el mismo.

Figura 241. Análisis térmico diferencial de la aleación 94%Zn-6%Al + 16%Bi, a) etapa de calentamiento, b) etapa de calentamiento ampliada, c) etapa de enfriamiento.
Y en la tabla 113, se resumen las señales térmicas de las gráficas de la figura 241.

Tabla 113. Resumen de los datos de temperatura obtenidos en el ensayo térmico diferencial DTA, para las muestras de la aleación 94%Zn-6%Al + 16%Bi.

<table>
<thead>
<tr>
<th>Temperatura alcanzada por la muestra en el proceso de fusión</th>
<th>Temperatura máxima del Ensayo DTA</th>
<th>Datos de Temperatura obtenidos en el ensayo DTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>700°C (Curva Azul)</td>
<td>710°C</td>
<td>Calentamiento (Fig.241 b) Enfriamiento (Fig.241 c)</td>
</tr>
<tr>
<td></td>
<td>252,55 - 254,82</td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td></td>
<td>278,57 - 284,97</td>
<td>259,44 - 246,72</td>
</tr>
<tr>
<td></td>
<td>379,84 - 385,39</td>
<td>217,71 - 215,89</td>
</tr>
<tr>
<td>550°C (Curva Verde)</td>
<td>252,94 - 256,33</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>278,74 - 285,02</td>
<td>260,40 - 251,07</td>
</tr>
<tr>
<td></td>
<td>377,44 - 382,58</td>
<td>366,23 - 352,39</td>
</tr>
<tr>
<td>430°C (Curva Roja)</td>
<td>550°C</td>
<td>252,94 - 256,33</td>
</tr>
<tr>
<td></td>
<td>278,74 - 285,02</td>
<td>262,41 - 254,55</td>
</tr>
<tr>
<td></td>
<td>377,44 - 382,58</td>
<td>366,23 - 352,39</td>
</tr>
</tbody>
</table>

E: Transformación Eutéctica, **U:** Transformación Eutectoide, **M:** Transformación Monotéctica

Al igual que pasaba con la aleación anterior, a partir de los 380ºC, no se obtiene ningún pico de los subsistemas binarios Zn-Al, Bi-Zn o Al-Bi, únicamente los picos correspondientes al sistema ternario Zn-Al-Bi, por tanto, la mezcla y homogeneización de esta aleación está bien realizada.

Las temperaturas aquí obtenidas, son más homogéneas que para el caso anterior, es decir, se obtienen valores muy parecidos para las tres muestras analizadas. Esto coincide con el hecho de que, tanto en la muestra que ha sido fundida hasta los 430ºC, como la de 700ºC se ha formado muy poca cantidad de microestructura eutéctica ternaria. Incluso la muestra que ha seguido el proceso normal de fusión hasta los 430ºC, posee un pico del eutéctico ternario con una intensidad superior al pico de las muestras que han sido sometidas a una temperatura de 700ºC, al contrario de los que se ha observado para la aleación anterior 94%Zn-6%Al + 16%Bi.
5.12.9 94%Zn-6%Al + 18%Bi, caracterización microestructural.

La siguiente aleación estudiada es la correspondiente a la adición de un 18% de bismuto. Y al igual que se ha hecho para las aleaciones con un 14% y un 16%, se funde una muestra hasta los 430°C y otra a 700°C. Las imágenes obtenidas en el microscopio óptico se muestran en las figuras 242 y 243.

Figura 242. a) y b) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 94%Zn-6%Al + 18%Bi que ha sido fundida hasta los 430°C y posteriormente enfriada en el interior del horno.

Figura 243. a) y b) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 94%Zn-6%Al +18%Bi fundida a 700°C y enfriada lentamente mediante Microscopia óptica a 200 aumentos.

Tanto en la muestra fundida hasta 430°C, imágenes figura 242, como en la de 700°C imágenes figura 243, no se observa inversión de dendritas como en la muestra 94%Zn-6%Al +14%Bi, ya que la microestructura pegada al eutéctico ternario esta toda compuesta por el agregado monotéctico \([\text{Al}(\text{fcc}-\text{a'}) + \text{Zn}(\text{hcp}-\beta)]\) y no se observan dendritas. Para esta aleación, y al igual que en la de 94%Zn-6%Al +14%Bi, tanto en la muestra fundida a 430°C como en la de 700°C, se desarrolla microestructura eutéctica ternaria, y esta se localiza en la base del lingote de solidificación, en la imagen 244 se muestra la imagen obtenida mediante SEM de una zona donde se localiza la microestructura la microestructura eutéctica ternaria.
Resultados y Discusión

Figura 244. Detalle de la microestructura eutéctica ternaria obtenida mediante SEM de la aleación 94%Zn-6%Al +18%Bi.

En la imagen de la figura 244, se muestra la microestructura característica del eutéctico ternario Zn-Al-Bi, compuesta en su mayoría por una zona blanca, marcada con el número 2 y unas zonas negras en forma de espigas oscuras en su mayoría, marcadas con el número 1. En las figuras 245 y 246, se muestra el resultado del análisis realizado a las zonas marcadas como 1 y 2.

Figura 245. Microanálisis semi-cuantitativo por EDX (Energy-dispersive X-ray) para la aleación 94%Zn-6%A + 18%Bi, en la zona clara 2, de la imagen de la figura 244.

Figura 246. Microanálisis semi-cuantitativo por EDX (Energy-dispersive X-ray) para la aleación 94%Zn-6%A + 18%Bi, en la zona oscura 1, de la imagen de la figura 244.

El espectro de la figura 245, revela que la zona clara constituyente del eutéctico ternario está compuesta en su mayoría por bismuto y en menor medida de zinc, el aluminio no participa en esta zona de la microestructura. Y el espectro de la figura 246, revela que las zonas oscuras están constituidas mayoritariamente de bismuto y zinc, el aluminio aunque aquí aparece, lo hace de forma minoritaria. Este resultado concuerda con lo obtenido mediante simulación termodinámica, tabla 99, donde se obtenía una participación muy pequeña del aluminio en el eutéctico ternario, ya que la gran mayoría se encuentra formando parte de las dendritas primáreas de fase Al(fcc-α').
Una vez caracterizada la microestructura de la aleación 94%Zn-6%Al + 18%Bi mediante microscopía óptica y SEM, se realiza el correspondiente ensayo térmico, los resultados se muestran en la figura 247 y en la tabla 114.

Figura 247. Análisis térmico diferencial de la aleación 94%Zn-6%Al + 18%Bi, a) etapa de calentamiento, b) etapa de calentamiento ampliada, c) etapa de enfriamiento.
Resultados y Discusión

Tabla 114. Resumen de los datos de temperatura obtenidos en el ensayo térmico diferencial DTA, para las muestras de la aleación 94%Zn-6%Al + 18%Bi.

<table>
<thead>
<tr>
<th>Temperatura alcanzada por la muestra en el proceso de fusión</th>
<th>Temperatura máxima del Ensayo DTA</th>
<th>Datos de Temperatura obtenidos en el ensayo DTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>700°C</td>
<td>710°C (Curva Azul)</td>
<td>Calentamiento (Fig.247 b) Enfriamiento (Fig.247 c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inicio (ºC) Máximo (ºC) Inicio (ºC) Máximo (ºC)</td>
</tr>
<tr>
<td></td>
<td>252.26 254.31</td>
<td>209 - E</td>
</tr>
<tr>
<td></td>
<td>278.53 284.73</td>
<td>260.81 241.83 U</td>
</tr>
<tr>
<td></td>
<td>377.73 384.36</td>
<td>365.19 355.7 M</td>
</tr>
<tr>
<td></td>
<td>253.38 254.54</td>
<td>231 233.21 E</td>
</tr>
<tr>
<td></td>
<td>278.47 284.85</td>
<td>262.31 253.55 U</td>
</tr>
<tr>
<td></td>
<td>377.56 384.09</td>
<td>366.30 355.70 M</td>
</tr>
<tr>
<td></td>
<td>253.02 256.27</td>
<td>233.21 231 E</td>
</tr>
<tr>
<td></td>
<td>278.56 285.03</td>
<td>262.31 253.55 U</td>
</tr>
<tr>
<td></td>
<td>377.97 384.01</td>
<td>366.30 355.70 M</td>
</tr>
<tr>
<td>550°C (Curva Verde)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>252.26 254.31</td>
<td>209 - E</td>
</tr>
<tr>
<td></td>
<td>278.53 284.73</td>
<td>260.81 241.83 U</td>
</tr>
<tr>
<td></td>
<td>377.73 384.36</td>
<td>365.19 355.7 M</td>
</tr>
<tr>
<td></td>
<td>253.38 254.54</td>
<td>231 233.21 E</td>
</tr>
<tr>
<td></td>
<td>278.47 284.85</td>
<td>262.31 253.55 U</td>
</tr>
<tr>
<td></td>
<td>377.56 384.09</td>
<td>366.30 355.70 M</td>
</tr>
<tr>
<td>430°C</td>
<td>550°C (Curva Roja)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>253.02 256.27</td>
<td>233.21 231 E</td>
</tr>
<tr>
<td></td>
<td>278.56 285.03</td>
<td>262.31 253.55 U</td>
</tr>
<tr>
<td></td>
<td>377.97 384.01</td>
<td>366.30 355.70 M</td>
</tr>
</tbody>
</table>

E: Transformación Eutéctica, **U:** Transformación Eutectoide, **M:** Transformación Monotéctica

Los resultados del ensayo térmico son muy similares a los de la aleación anterior con la adición de un 16%Bi, las temperaturas que se obtienen son muy parecidas para las tres muestras analizadas, y solo a destacar que las correspondientes a la etapa de enfriamiento distan mucho de las de calentamiento, pero esta tendencia es la que se viene observando en dicha etapa.

5.12.10 94%Zn-6%Al + 20%Bi, caracterización microestructural.

La última de las aleaciones que va ser sometida a las temperaturas de fusión de 430°C y 700°C es la de la adición del 20%Bi. En las siguientes imágenes se muestra la aleación base con la adición de un 20% de bismuto. Para este caso también se funde una muestra hasta los 700°C y otra a la temperatura normal de fusión de la aleación marcada por el diagrama binario Zn-Al. Las imágenes que se obtienen en la caracterización en el microscopio óptico, se muestran en las figuras 248 y 249.

![Figura 248. a) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 94%Zn-6%Al + 20%Bi que ha sido fundida hasta los 430°C y posteriormente enfriada en el interior del horno, b) detalle de la microestructura monotéctica de la imagen a).]
Las imágenes de la figura 248, correspondientes a la muestra tipo A fundida hasta los 430°C y muestran la microestructura habitual para esta aleación, en la parte inferior el eutéctico ternario y encima de él, la microestructura monotéctica constituida por las fases \([\text{Al}(\text{fcc-}\alpha') + \text{Zn}(\text{hcp-}\beta)]\).

Para esta muestra no se observa inversión de las dendritas, en cambio, para la muestra que ha sido fundida hasta los 700°C, mostrada en las imágenes de la figura 249, sí que se observa un cambio en el tipo de dendritas cercano a la microestructura eutéctica ternaria. Este hecho puede ser que se produzca porque la muestra fundida hasta los 700°C al tener que enfriarse desde una temperatura mayor, tenga un mayor tiempo para que se puedan producir cambios en la microestructura.

Una vez observada la microestructura de las muestras de la aleación 94%Zn-6%Al + 20%Bi al microscopio óptico, se toman tres muestras de la misma, dos correspondientes a la aleación que ha sido fundida hasta los 700°C y otra de la aleación fundida hasta los 430°C y se las somete al programa de temperatura controlado. Los resultados obtenidos se muestran en forma de gráficas en la figura 250 y en forma de datos de temperatura en la tabla 115.
Las curvas correspondientes a la etapa de calentamiento y enfriamiento de la figura 250 muestran al igual que las aleaciones anteriormente estudiadas por este procedimiento, 94%Zn-6%Al + 14%Bi, 16%Bi y 18%Bi, que tampoco se obtiene ningún pico por encima de los 380°C, por tanto, todos los picos que se obtienen son debidos al sistema ternario Zn-Al-Bi.

Figura 250. Análisis térmico diferencial de la aleación 94%Zn-6%Al + 20%Bi, a) etapa de calentamiento, b) etapa de calentamiento ampliada, c) etapa de enfriamiento.
Observando los datos de temperatura de la tabla 115, la tendencia hasta seguida para las aleaciones 94%Zn-6%Al + 14%Bi, 16%Bi y 18%Bi se mantiene también para la aleación con la adición del 20%Bi, no obteniéndose valores dispares entre las tres muestras analizadas.

5.12.11 94%Zn-6%Al + 30%Bi, caracterización microestructural.

Retomando el procedimiento experimental seguido desde el comienzo de la discusión de resultados con las aleaciones 20%Zn-80%Al, la siguiente adición realizada a la aleación base 94%Zn-6%Al es la del 30%. Las imágenes obtenidas mediante microscopía óptica, se muestran en la figura 251.

Tabla 115. Resumen de los datos de temperatura obtenidos en el ensayo térmico diferencial DTA, para la muestra 94%Zn-6%Al + 20%Bi.

<table>
<thead>
<tr>
<th>Temperatura alcanzada por la muestra en el proceso de fusión</th>
<th>Temperatura máxima del Ensayo DTA</th>
<th>Datos de Temperatura obtenidos en el ensayo DTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>700°C (Curva Azul)</td>
<td>710°C</td>
<td>Tabla 92. Resumen de las señales térmicas del programa controlado de temperatura para la muestra 94%Zn-6%Al + 20%Bi.</td>
</tr>
<tr>
<td>550°C (Curva Verde)</td>
<td>620°C</td>
<td>Tabla 115. Resumen de los datos de temperatura obtenidos en el ensayo térmico diferencial DTA, para la muestra 94%Zn-6%Al + 20%Bi.</td>
</tr>
<tr>
<td>430°C (Curva Roja)</td>
<td>550°C</td>
<td>Tabla 92. Resumen de las señales térmicas del programa controlado de temperatura para la muestra 94%Zn-6%Al + 20%Bi.</td>
</tr>
</tbody>
</table>

Figura 251. Microestructura obtenida mediante microscopía óptica de la aleación 94%Zn-6%Al + 30%Bi enfriada en el interior del horno, a) X100 y b) X200 aumentos.
Como se ve en la imagen a) de la figura 251 con la adición de un 30% de bismuto también se desarrolla la microestructura eutéctica ternaria en el fondo del lingote de solidificación, y al igual que se ha observado para las aleaciones 94%Zn-6%Al + 8%Bi y 94%Zn-6%Al + 20%Bi, en la zona cercana al eutéctico ternario la fase que inicialmente precipita es la Zn(hcp-β) y conforme ascendemos por el lingote de solidificación la fase Al(fcc-α’) es la que precipita inicialmente. El resto de la microestructura es similar a la del resto de aleaciones estudiadas en este apartado.

Los resultados de los ensayos térmicos realizados a las muestras de la aleación 94%Zn-6%Al + 30%Bi, se plasman en la figuras 252. Para la etapa de calentamiento y 253 para la de enfriamiento. Y en las tablas 116 y 117, se recogen por transformaciones, las temperaturas de los picos asociadas a dichas transformaciones.

Tabla 116. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA, para la muestra 94%Zn-6%Al + 30%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 252)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,89</td>
</tr>
<tr>
<td>Base B</td>
<td>380,79</td>
</tr>
<tr>
<td>Muestra A</td>
<td>251,80</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,63</td>
</tr>
</tbody>
</table>
Resultados y Discusión

Los datos de temperatura de la muestra tipo A son prácticamente idénticos a los de la muestra tipo B excepto en la temperatura de inicio de la transformación monotéctica que es un poco alta la de la muestra B y se aleja de la que marca la bibliografía [30, 31].

En cuanto a la temperatura del comienzo de la solidificación de la aleación, solo se ha podido extraer para la muestra tipo B, y se compara con la de aleaciones anteriores varía 1-2ºC en función de la aleación, ya que esta temperatura se obtiene entre los 375-378ºC.

5.12.12 94%Zn-6%Al + 40%Bi, caracterización microestructural.

En las imágenes de la figura 254 se muestra la microestructura de la aleación base 94%Zn-6%Al con la adición de un 40%Bi.

![Figura 254. a) y b) Microestructuras obtenidas mediante Microscopía óptica a 200 aumentos de la aleación 94%Zn-6%Al + 40%Bi enfriada en el interior del horno, c) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 94%Zn-6%Al + 40%Bi enfriada al aire.](image)

Como se ha venido observando hasta ahora en la discusión de resultados, el enfriamiento rápido de las muestras implica un tamaño más pequeño de las dendritas primarias de solidificación, como se ve en la imagen c) de la figura 254.
En la parte inferior de la imagen a) se observa la formación de la microestructura eutéctica ternaria, aunque no se aprecian las espigas oscuras ricas en zinc, y en la parte superior de la imagen la microestructura monotéctica ternaria. En la imagen b) de la figura 254, se ven las dendritas primarias de solidificación de fase $\text{Al}(fcc-\alpha')$. No se ve por tanto ningún cambio en el aspecto superficial de esta aleación comprada con las de las aleaciones anteriormente estudiadas. A continuación, en las figuras 255 y 256 se analizan los resultados de las curvas térmicas tipo DTA, obtenidas de las muestras de la aleación en estudio, 94%Zn-6%Al + 40%Bi.

![Figura 255. Análisis térmico diferencial de la etapa de calentamiento de la aleación 94%Zn-6%Al + 40%Bi.](image)

![Figura 256. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 94%Zn-6%Al + 40%Bi.](image)

Las temperaturas resultantes de la integración de los picos y las correspondientes a los máximos de los mismos de las figuras 255 y 256 se recogen en las tablas 118 y 119.

Tabla 118. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA, para la muestra 94%Zn-6%Al + 40%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 255)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,89</td>
</tr>
<tr>
<td>Base B</td>
<td>380,81</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,14</td>
</tr>
<tr>
<td>Muestra B</td>
<td>250,81</td>
</tr>
</tbody>
</table>
Tabla 119. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico DTA, para la muestra 94%Zn-6%Al + 40%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 256)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td>-</td>
</tr>
<tr>
<td>Muestra B</td>
<td>376,53</td>
</tr>
</tbody>
</table>

Si se comparan los resultados de temperatura obtenidos para la muestra 94%Zn-6%Al + 40%Bi con las de las aleaciones anteriores, no reflejan diferencias apreciables excepto para la temperatura de la reacción eutéctica ternaria para la muestra tipo B, que desciende un par de grados situándose en los 250,81°C.

5.12.13 94%Zn-6%Al + 50%Bi, caracterización microestructural.

En las imágenes de la figura 257, se presenta el aspecto superficial de la microestructura de la aleación base 94%Zn-6%Al con la adición de 50% de bismuto.

Figura 257. Microestructuras obtenidas mediante Microscopía óptica de la aleación 94%Zn-6%Al + 50%Bi enfriada en el interior del horno, a)X50 y b) X200; c) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 94%Zn-6%Al + 50%Bi enfriada al aire.

Las imágenes obtenidas en el microscopio óptico para una adición del 50%Bi, figura 257, son similares a las obtenidas con una adición de 40%Bi. Hay que destacar únicamente que en la imagen a) se detecta inversión en el tipo de dendritas primarias en las regiones próximas a la microestructura eutéctica ternaria, al igual que para las aleaciones de composiciones 94%Zn-6%Al + 8%Bi, 20%Bi y 30%Bi.
En las figuras 258 y 259 se reflejan las curvas de calentamiento y enfriamiento para las muestras tipo A y tipo B de la aleación actualmente en estudio de composición 94%Zn-6%Al + 50%Bi, junto con las de las aleaciones base, curvas roja y verde.

Tanto las curvas de la etapa de calentamiento como las de enfriamiento, no muestran ningún cambio con respecto a las obtenidas para aleaciones anteriores. El primer pico que se obtiene en la figura 258 para las muestras A y B en torno a los 251°C es el correspondiente a la reacción eutéctica ternaria, el segundo pico situado a la temperatura de 278°C corresponde con el de la reacción eutectoide y el último y de mayor intensidad, a la reacción monotéctica. En La etapa de enfriamiento solo se obtienen los picos de la reacción monotéctica y el de la eutectoide. En las tablas 120 y 121 se detallan las temperaturas de cada uno de estos picos.

Tabla 120. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico DTA, para la muestra 94%Zn-6%Al + 50%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 258)</th>
<th>94%Zn-6%Al + 50% de Bismuto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,89</td>
<td>385,06</td>
</tr>
<tr>
<td>Base B</td>
<td>380,79</td>
<td>385,68</td>
</tr>
<tr>
<td>Muestra A</td>
<td>251,84</td>
<td>253,78</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,08</td>
<td>253,18</td>
</tr>
</tbody>
</table>
Resultados y Discusión

Tabla 121. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico DTA, para la muestra 94%Zn-6%Al + 50%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 259)</th>
<th>94%Zn-6%Al + 50% de Bismuto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
<td>Monotéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra B</td>
<td>376,17</td>
<td>366,44</td>
</tr>
</tbody>
</table>

Los resultados del ensayo térmico para esta aleación son similares a los obtenidos en aleaciones anteriores con adiciones del 30% y 40% de bismuto, no hay ningún cambio significativo.

5.12.14 94%Zn-6%Al + 60%Bi, caracterización microestructural.

En la figura 260, se muestran las imágenes obtenidas mediante microscopía óptica para la última de las aleaciones estudiadas en el apartado de la aleación base 94%Zn-6%Al.

Figura 260. Microestructuras obtenidas mediante Microscopía óptica de la aleación 94%Zn-6%Al + 60%Bi enfriada en el interior del horno, a)X50 y b) X200; c) Microestructura obtenida mediante Microscopía óptica a 200 aumentos de la aleación 94%Zn-6%Al + 60%Bi enfriada al aire.

Con la adición de un 60%Bi, también se observa una pequeña cantidad de eutéctico ternario en la zona inferior del lingote, al igual que las aleaciones con adiciones del 30%, 40% y 50%Bi, aunque para este caso, la cantidad e microestructura visible al óptico es la más pequeña. Las imágenes b) y c) de la figura 260 muestran una microestructura similar a la de las aleaciones anteriores, no se observa ningún cambio significativo.
Para finalizar y siguiendo el mismo esquema que para todas las aleaciones anteriores, se toma un amuestra tipo A y otra tipo B de la aleación 94%Zn-6%Al y se las somete a un programa de temperatura controlado. Los resultados se dividen en función del tipo de etapa y se muestran en las figuras 261 y 262. Y las temperaturas de cada uno de los picos junto con las de las aleaciones base se resumen en las tablas.

Figura 261. Análisis térmico diferencial de la etapa de calentamiento de la aleación 94%Zn-6%Al + 60%Bi.

Figura 262. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 94%Zn-6%Al + 60%Bi.

Tabla 122 y 123. Resumen de los datos de temperatura obtenidos en el ensayo térmico DTA, para la muestras de la aleación 94%Zn-6%Al + 60%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 261)</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 262)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>380.89</td>
<td>385.06</td>
</tr>
<tr>
<td>Base B</td>
<td>380.79</td>
<td>385.68</td>
</tr>
<tr>
<td>Muestra A</td>
<td>251.87</td>
<td>254.11</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251.16</td>
<td>253.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Solidificación</th>
<th>Monotéctica</th>
<th>Eutectoide</th>
<th>Eutética</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>-</td>
<td>260,17</td>
<td>250,55</td>
<td>371,51</td>
</tr>
<tr>
<td>Muestra A</td>
<td>366,65</td>
<td>353,07</td>
<td>260,33</td>
<td>251,95</td>
</tr>
<tr>
<td>Muestra B</td>
<td>379,42</td>
<td>367,69</td>
<td>354,71</td>
<td>259,57</td>
</tr>
</tbody>
</table>

Tablas 122 y 123. Resumen de los datos de temperatura obtenidos en el ensayo térmico DTA, para la muestras de la aleación 94%Zn-6%Al + 60%Bi.
Los resultados del ensayo térmico obtenidos para las muestra 94%Zn-6%Al + 60%Bi son similares a los obtenidos para las aleaciones anteriores.

Una vez estudiadas todas las aleaciones resultantes de la adición de las diferentes cantidades de bismuto a la aleación base, se discuten los resultados de todas ellas de forma global. En la figura 263 se muestra un resumen de las microestructuras obtenidas para las aleación 94%Zn-6%Al con las adiciones del 10%Bi, 20%Bi, 30%Bi, 40%Bi, 50%Bi, 60%Bi.

Figura 263. Microestructuras obtenidas mediante microscopía óptica a 100 aumentos para las aleaciones a)94%Zn-6%Al + 10%, b) 94%Zn-6%Al + 20%; c) 94%Zn-6%Al + 30%; d) 94%Zn-6%Al + 40%; e) 94%Zn-6%Al + 50% y f) 94%Zn-6%Al + 60%.

En términos generales y observando las imágenes de la figura 263, correspondientes a las principales adiciones de bismuto realizadas a la aleación base 94%Zn-6%Al, no se ha observado un aumento en la formación de la microestructura del eutéctico ternario conforme se ha ido añadiendo mayores cantidades de bismuto, al contrario, se ha reducido, y para como se aprecia en la imagen f) de la figura 263, para la adición de un 60% Bi, a penas si es visible al óptico dicha microestructura.

También se ha observado al microscopio óptico que en las muestras tipo A, la microestructura eutéctica ternaria se forma en mayor medida, distinguiéndose en la base del lingote una mayor zona, esto es debido a que este tipo de muestras sufren un proceso de enfriamiento y solidificación más lento que las tipo B, que provoca que estos
procesos se lleven a cabo de forma más lenta y por consiguiente, que las microestructuras se desarrollen más.

Con respecto a las aleaciones 94%Zn-6%Al + 14%; 94%Zn-6%Al + 16%; 94%Zn-6%Al + 18% y 94%Zn-6%Al + 20% que han sido sometidas a un procedimiento experimental distinto al resto de aleaciones hay que destacar como único aspecto relevante que tanto en la caracterización microestructural mediante microscopia óptica como en la caracterización mediante análisis térmicos, no se han obtenido evidencias de los subsistemas binarios Al-Zn; Bi-Zn y Al-Bi, confirmando por tanto, que las mezclas realizadas partiendo de la aleación Al-Zn y añadiendo posteriormente Bi, dan como resultado las aleaciones ternarias correspondientes Al-Zn-Bi.

Continuando con la exposición de resultados globales para el grupo de aleaciones 94%Zn-6%Al + adiciones de bismuto estudiadas en este apartado, se representa el flujo de calor puesto en juego en cada una de las transformaciones que tienen lugar frente a la temperatura. En la figura 264 se representan las curvas DSC correspondientes a las muestras tipo A y B de la aleación base 94%Zn-6%Al y en las figuras 265-268, las correspondientes a las aleaciones base con las diferentes adiciones de bismuto realizadas.

![Figura 264. Análisis térmico DSC de la etapa de calentamiento para la aleación Base 94%Zn-6%Al.](image)

Tanto en la muestra tipo A como en la B se obtienen dos picos, el primero a 279ºC, correspondiente con la reacción eutectoide binaria y el segundo pico entorno a 381ºC, correspondiente a la reacción eutéctica binaria: \(L \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) \).
En la figura 265 se muestran las curvas para las aleaciones 94%Zn-6%Al + Adiciones de 2%, 4%, 6% y 8% Bi y en la figura 266 para las aleaciones 94%Zn-6%Al + Adiciones de 10%, 12%, 14% y 16% Bi.

En todas las curvas representadas en las figuras 268-268 se obtienen tres picos, el primero localizado en torno a 251°C y de menor intensidad correspondiente a la reacción eutéctica ternaria, \(L \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) \), el segundo pico situado a 278°C correspondiente a la reacción eutectoide ternaria, \(Al(fcc-\alpha') \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) \).
y el tercero de mayor intensidad, situado a 378°C correspondiente a la transformación monotéctica ternaria, \(L \leftrightarrow L'' + Al(fcc-\alpha') + Zn(hcp-\beta) \).

Tabla 124. Resumen de los datos de flujo de calor obtenidos en el del programa controlado de temperatura para la muestra 94%Zn-6%Al + Adiciones de Bismuto.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de calor absorbido en la etapa de calentamiento (Fig.264-268)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctico Ternario</td>
<td>Eutectoide Ternario</td>
<td>Monotéctica Ternario</td>
</tr>
<tr>
<td></td>
<td>Flujo de Calor (J/g)</td>
<td>Flujo de Calor (J/g)</td>
<td>Flujo de Calor (J/g)</td>
</tr>
<tr>
<td>Base A</td>
<td>80,82*</td>
<td>8,715**</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>77,17*</td>
<td>7,703**</td>
<td>-</td>
</tr>
<tr>
<td>+2%Bi</td>
<td>0,3092</td>
<td>7,745</td>
<td>74,42</td>
</tr>
<tr>
<td>+4%Bi</td>
<td>0,6840</td>
<td>6,459</td>
<td>75,40</td>
</tr>
<tr>
<td>+6%Bi</td>
<td>0,673</td>
<td>6,197</td>
<td>77,01</td>
</tr>
<tr>
<td>+8%Bi</td>
<td>0,7631</td>
<td>8,602</td>
<td>83,87</td>
</tr>
<tr>
<td>+10%Bi</td>
<td>25,70</td>
<td>3,448</td>
<td>43,51</td>
</tr>
<tr>
<td>+12%Bi</td>
<td>18,12</td>
<td>4,369</td>
<td>54,93</td>
</tr>
<tr>
<td>+14%Bi</td>
<td>1,128</td>
<td>6,962</td>
<td>79,07</td>
</tr>
<tr>
<td>+16%Bi</td>
<td>15,13</td>
<td>4,901</td>
<td>60,11</td>
</tr>
<tr>
<td>+18%Bi</td>
<td>12,83</td>
<td>4,244</td>
<td>61,10</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>2,426</td>
<td>6,694</td>
<td>79,10</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>1,083</td>
<td>5,079</td>
<td>69,51</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>2,647</td>
<td>6,449</td>
<td>71,49</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>1,2</td>
<td>6,566</td>
<td>75,10</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>1,090</td>
<td>6,393</td>
<td>73,11</td>
</tr>
</tbody>
</table>

*Calor absorbido eutéctica binaria; ** Calor absorbido eutectoide binaria.

Observando en conjunto los datos de la tabla 124, correspondientes al flujo de calor absorbido por las diferentes aleaciones en las transformaciones eutéctica, eutectoide y monotéctica, se obtienen las siguientes conclusiones.

- Los valores más pequeños de calor absorbido para la transformación eutéctica ternaria son para las aleaciones con adiciones del 2%, 4%, 6% y 8% de bismuto, todos ellos coherentes con lo obtenido en la caracterización en el microscopio óptico, donde no se ha observado eutéctico ternario en ninguna de estas aleaciones, excepto en la del 8%, donde sí que se observa una gran cantidad de microestructura ternaria, figura 223, por tanto este dato de flujo de calor no concuerda con lo obtenido en la caracterización microestructural en el óptico.

Los valores mayores de flujo de calor absorbido son para las aleaciones con adiciones del 10%, 12%, 16% y 18%, en todos ellas se ha observado al microscopio óptico la microestructura eutéctica ternaria. Para las adiciones del
20%, 30%, 40%, 50% y 60%, se ha visto una disminución en la formación de la cantidad de microestructura eutéctica ternaria conforme aumenta la cantidad de bismuto añadido, por tanto, los datos obtenidos de flujo en el ensayo térmicos del tipo DSC, son coherentes con los resultados obtenidos en la caracterización microestructural.

- En cuanto a los valores de calor absorbido por las aleaciones en la transformación eutéctoide no hay grandes diferencias a destacar ya que, todos los valores obtenidos son del mismo orden de magnitud, 4-8J/g. Los mayores datos de calor absorbido se obtienen para las aleaciones con adiciones de bismuto del 8% (8,602J/g), 14% (6,96J/g), 20% (6,69J/g), 30% (5,79J/g) y 50% (6,56J/g). Estos datos están relacionados con el hecho observado en el microscopio óptico para estas muestras, en las que se produce un gradiente de concentración en el lingote de solidificación pegado a la zona donde se ha formado la microestructura eutéctica ternaria, y que provoca que se desarrollen dendritas de la fase Zn(hcp-β), diferentes a las que se forman en el resto de la muestra, que son de fase Al(fcc-α’).

- En los datos de calor absorbido para la transformación monotéctica se observa que, la muestra con la adición del 10%Bi es la que tiene el valor más pequeño y a su vez, es la aleación que absorbe mayor calor en la reacción eutéctica ternaria, es decir, que en esta aleación se está produciendo preferentemente esta transformación a costa de la monotéctica ternaria, que al tener un valor de flujo de calor más pequeño se está produciendo en menor medida. Para el resto de aleaciones ocurre lo mismo, las que absorben más calor en la reacción monotéctica, tienen luego los menores valores de calor absorbido para la reacción eutéctica.

 Al igual que se ha hecho para el calor absorbido, y con el fin de comparar unas curvas con otras, a continuación en las figuras 269-271 se representan todas las curvas diferenciales de temperatura para todas las aleaciones que han sido estudiadas en este apartado.
En la figura 269, se representan las curvas DTA para la etapa de calentamiento para la aleación base 94%Zn-6%Al y las aleaciones base con una adición de bismuto del 2%, 4%, 6%, 8% y 10%.

![Diagrama de DTA para la etapa de calentamiento](image)

Figura 269. Curvas DTA de la etapa de calentamiento para la aleación 94%Zn-6%Al base y las adiciones de 2%, 4%, 6%, 8% y 10% Bi.

En la figura 270, se representan las curvas DTA de la etapa de calentamiento para la aleación base 94%Zn-6%Al y las aleaciones con una adición de bismuto del 12%, 14%, 16%, 18% y 20%, y en la figura 271, para la aleación base 94%Zn-6%Al y las aleaciones con una adición de bismuto del 30%, 40%, 50% y 60%.

![Diagrama de DTA para la etapa de calentamiento](image)

Figura 270. Curvas DTA de la etapa de calentamiento para la aleación 94%Zn-6%Al base y las adiciones del 12%, 14%, 16%, 18% y 20% Bi.

![Diagrama de DTA para la etapa de calentamiento](image)

Figura 271. Curvas DTA de la etapa de calentamiento para la aleación 94%Zn-6%Al base y las adiciones del 30%, 40%, 50% y 60% Bi.
Observando las curvas DTA relativas a las aleaciones con adición de bismuto, aparecen tres picos, el primero y más pequeño situado a menores temperaturas correspondiente a la reacción eutética ternaria, el segundo a la reacción eutectoide ternaria y el último que aparece a mayores temperaturas, el correspondiente a la reacción monotética ternaria.

En la tabla 125 se recogen los valores de temperatura correspondientes a las reacciones eutética, eutectoide y monotética. En la cuarta columna se recogen las temperaturas obtenidas mediante simulación termodinámica con Thermo-Calc, relativas a la fusión de las aleaciones, puesta de manifiesto por la aparición de la fase líquida denotada como L'. En la última columna se resumen las temperaturas obtenidas experimentalmente en la etapa de enfriamiento de los ensayos térmicos DTA, para poder compararlas con las que predice la simulación termodinámica.

Tabla 125. Resumen de las temperaturas obtenidas en el del programa controlado de temperatura para la muestra 94%Zn-6%Al + Adiciones de Bismuto.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de Calentamiento (°C)(fig. 269-271)</th>
<th>Datos de temperatura en la etapa de Enfriamiento (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutético Ternario</td>
<td>Eutectoide Ternario</td>
</tr>
<tr>
<td>Base *827,39</td>
<td>**279,96</td>
<td>-</td>
</tr>
<tr>
<td>+2%Bi 250,57</td>
<td>278,88</td>
<td>376,40</td>
</tr>
<tr>
<td>+4%Bi 251,43</td>
<td>278,69</td>
<td>377,01</td>
</tr>
<tr>
<td>+6%Bi 252,02</td>
<td>279,25</td>
<td>379,53</td>
</tr>
<tr>
<td>+8%Bi 253,40</td>
<td>278,68</td>
<td>377,51</td>
</tr>
<tr>
<td>+10%Bi 253,85</td>
<td>279,47</td>
<td>378,76</td>
</tr>
<tr>
<td>+12%Bi 251,95</td>
<td>278,77</td>
<td>379</td>
</tr>
<tr>
<td>+14%Bi 252,94</td>
<td>278,74</td>
<td>377,44</td>
</tr>
<tr>
<td>+16%Bi 253,02</td>
<td>278,56</td>
<td>377,97</td>
</tr>
<tr>
<td>+18%Bi 252,45</td>
<td>278,82</td>
<td>379,22</td>
</tr>
<tr>
<td>+20%Bi 251,80</td>
<td>278,12</td>
<td>377,84</td>
</tr>
<tr>
<td>+30%Bi 252,14</td>
<td>278,30</td>
<td>376,84</td>
</tr>
<tr>
<td>+50%Bi 251,84</td>
<td>278,21</td>
<td>378,41</td>
</tr>
<tr>
<td>+60%Bi 251,87</td>
<td>278,42</td>
<td>379,32</td>
</tr>
</tbody>
</table>

*Temperatura eutéctica binaria; ** Temperatura eutectoide binaria.
Los datos de temperatura recogidos en la tabla 125 muestran que:

- Las temperaturas correspondientes a la transformación eutéctoide ternaria son todas muy similares y se encuentran en torno a los 278°C que marca la bibliografía \[30, 31\] para esta transformación. En cambio, si comparamos estas temperaturas experimentales con las obtenidas mediante simulación termodinámica 277,63°C \[188\], son 1°C mayores.

- De acuerdo con la bibliografía \[30, 31\], la temperatura correspondientes a la transformación monotéctica ternaria 376°C, tiene que ser entre 3°C y 4°C más pequeñas que la temperatura del eutéctico binario, 381°C y no se obtienen como tal, son ligeramente inferiores, pero no se desmarcan todo lo que debieran, ya que las temperaturas obtenidas oscilan entre 376,40°C-379,67°C.De todas formas esa pequeñas diferencias de temperatura obtenidas permiten la diferenciación entre la transformación monotéctica ternaria, \(L’ \leftrightarrow L’’ + Al(fcc-\alpha’) + Zn(hcp-\beta) \), y la eutéctica binaria, \(L’ \leftrightarrow Al(fcc-\alpha’) + Zn(hcp-\beta) \)

- En cuanto a la transformación eutéctica ternaria, se obtienen valores más dispares. La simulación termodinámica marca su temperatura a 256,42°C \[188\], la bibliografía a 253,9°C \[30, 31\] y las experimentales varían entre los 250-253°C. Los valores experimentales de temperatura más cercanos al obtenido en la bibliografía son para las aleaciones donde se observaba al microscopio óptico mayor cantidad de microestructura eutéctica ternaria, en concreto para las aleaciones de composición 94%Zn-6%Al + (10%Bi, 12%Bi y 18%Bi) con 253°C, seguidas de las aleaciones 94%Zn-6%Al + (16%Bi, 20%Bi, 40% y 8%Bi) con 252°C.

- En cuanto a los datos de temperatura para el comienzo de la fusión de la aleaciones por formación de la fase líquida \(L’ \) y obtenidos por simulación termodinámica, se observa que para la aleación base de composición 94%Zn-6%Al este proceso comienza a una temperatura de 397,89°C, y conforme aumenta el contenido de bismuto añadido, esta temperatura disminuye hasta los 389,87°C para la aleación de composición 94%Zn-6%Al + 8%Bi. A partir de
esta composición para el resto de aleaciones esta temperatura no varía, es decir, que a partir de la adición de un 8% de bismuto a aleación base, la temperatura a la cual comienza a fundir la aleación, no cambia. Estos datos de temperatura obtenidos mediante simulación termodinámica [188], la cual no distingue entre etapa de calentamiento y enfriamiento, solo pueden ser comparados con los obtenidos experimentalmente en la etapa de enfriamiento, mostrados en la última columna de tabla 125. Los datos experimentales muestran un descenso de la temperatura de solidificación de 10°C comparados con los de la simulación, tanto para la aleación base como para las aleaciones con adición de bismuto de hasta un 8%. A partir de la adición del 30%Bi, esta temperatura disminuye hasta los 376°C-379°C, acercándose de nuevo al valor obtenido experimentalmente para la aleación base de 378,69°C. Por tanto, no se ha obtenido una concordancia en los valores obtenidos de temperatura con la simulación termodinámica [188], con los obtenidos experimentalmente mediante los ensayos térmicos correspondientes, ya que ambos tendrían que estar muy próximos entre sí.

5.13 Simulación termodinámica de la aleación base 96%Zn-4%Al.

La última aleación que ha sido estudiada es la que posee un 96% en zinc y un 4% de aluminio. Como se ha hecho en las cuatro aleaciones anteriores, al comienzo del estudio de cada grupo de aleaciones, en la figura 272 se presenta el diagrama de fases y se marca con una línea roja discontinua la composición que va ser objeto de estudio.

Figura 272. Diagrama de fases del sistema Zinc-Aluminio, obtenido mediante simulación termodinámica con el software Thermocalc [188].
El diagrama de fases de la figura 272 muestra que la aleación actual de estudio de composición 96%Zn-4%Al es hipereutéctica, por tanto, la solidificación de la aleación comenzará mediante la formación de dendritas primarias de fase Zn(hcp-β).

Tomado como referencia otras fuentes bibliográficas como el diagrama propuesto por Murray y publicado en el ASM Handbook [193], también se extrae que en el diagrama binario Zn-Al, la composición 96%Zn-4%Al es hipereutéctica.

La línea roja discontinua de la figura 272 muestra el hipotético camino seguido por la aleación de composición 96%Zn-4%Al desde su estado líquido a 700ºC hasta la temperatura de 100ºC, temperatura a la cual ya ha solidificado por completo. A continuación, en la figura 273 obtenida mediante simulación termodinámica [188] se muestra la evolución con la temperatura de cada una de las fases presentes en la aleación 96%Zn-4%Al. Las fases aparecen como líneas de colores, la azul corresponde con la fase líquida, la morada con la fase Zn(hcp-β), la verde con la Al(fcc-α’) y la roja con la Al(fcc-α).

![Figura 273. Variación de las fases presentes en el sistema 96%Zn-4%Al con la temperatura [188]](image)

Los puntos del 1-5 marcados en las figuras 272 y 273 muestran las zonas donde se produce un cambio significativo en las fases de la aleación 96%Zn-4%Al. A cada uno de estos puntos va asociada una temperatura y unos valores de composición determinados, los cuales se resumen en la tabla 126.
Resultados y Discusión

Observando los datos de la tabla 126, la composición de la fase Zn(hcp-β), es la que se encuentra mayoritariamente ya que la aleación en estudio es hipereutéctica, posee un 96%Zn.

Siguiendo el camino de enfriamiento de la línea discontinua roja de la figura 272 y 273, a la temperatura de 700°C, punto 1, la aleación se encuentra en estado líquido y hasta que la temperatura no desciende a los 404°C, punto 2, no comienza a solidificar por formación de la fase Zn(hcp-β). A partir del punto 2 y conforme disminuye la temperatura, la composición de la fase Zn(hcp-β), línea morada, va aumentando a costa de la disminución de la fase líquida L, hasta llegar a la temperatura de la transformación eutéctica binaria L↔Al(fcc-α') + Zn(hcp-β), a 380,89°C en el punto 3 y mediante la cual, el líquido se transforma en las fases Al(fcc-α') y Zn(hcp-β). Estas dos nuevas fases se forman en los espacios interdendríticos de la fase inicial que precipita Zn(hcp-β).

Entre el punto 3 a 380,89°C y el punto 4 a 277,23°C, la composición de la fase Zn(hcp-β) disminuye ligeramente desde 0,969 hasta 0,977 y la de la fase Al(fcc-α') aumenta hasta llegar al punto 4 donde tiene lugar la transformación eutectoide Al(fcc-α') ↔ Al(fcc-α) + Zn(hcp-β) mediante la cual, la fase Al(fcc-α') se transforma en las fases Al(fcc-α) y Zn(hcp-β), con unas composiciones de 0,028 y 0,977 respectivamente.

A partir del punto 4 a 277,23°C hasta llegar al punto 5 a la temperatura de 100°C, no se producen más cambios en la microestructura y las composiciones tanto de la fase Zn(hcp-β) como de Al(fcc-α) se mantienen prácticamente constantes.

Tabla 126. Resumen de los cambios principales que tienen lugar en la aleación de composición 96%Zn-4%Al.

<table>
<thead>
<tr>
<th>Punto Interés</th>
<th>T(°C)</th>
<th>Líquido</th>
<th>Al (fcc-α)</th>
<th>Al (fcc-α')</th>
<th>Zn (hcp-β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>404</td>
<td>0,968</td>
<td>0</td>
<td>0</td>
<td>0,032</td>
</tr>
<tr>
<td>3</td>
<td>380,89</td>
<td>0</td>
<td>0</td>
<td>0,030</td>
<td>0,969</td>
</tr>
<tr>
<td>4</td>
<td>277,23</td>
<td>0</td>
<td>0,028</td>
<td>0</td>
<td>0,977</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0</td>
<td>0,039</td>
<td>0</td>
<td>0,96</td>
</tr>
</tbody>
</table>

Punto Interés T(°C) Líquido Al (fcc-α) Al (fcc-α') Zn (hcp-β)
1 700 1 0 0 0
2 404 0,968 0 0 0,032
3 380,89 0 0 0,030 0,969
4 277,23 0 0,028 0 0,977
5 100 0 0,039 0 0,96
5.14 Aleaciones 96%Zinc-4%Aluminio. Caracterización Material Base.

Una vez realizada la simulación termodinámica para conocer las fases presentes y su evolución con la temperatura para la aleación base de composición 96%Zn-4%Al, se pasa a la caracterización microestructural de la misma mediante microscopía óptica y electrónica de barrido. Las imágenes obtenidas en el óptico se muestran en la figura 274.

Como predice la simulación termodinámica [188], la microestructura de la aleación 96%Zn-4%Al presenta dendritas primarias de solidificación de fase Zn(hcp-β), que se observan de color blanco, sobre una matriz eutéctica [199], constituida por una red de laminillas alternadas de fases Al(fcc-α) y Zn(hcp-β) en las imágenes de la figura 274.

De acuerdo con el diagrama de la figura 272, la composición 96%Zn-4%Al se encuentra muy próxima al punto eutéctico, por este motivo se observa mayor cantidad de matriz eutéctica que dendritas de fase Zn(hcp-β).

En las imagen b) de la figura 274 se observa que la aleación tipo A enfriada en el interior del horno, posee unas dendritas de mayor tamaño y en menor número que las observadas en la imagen a) correspondientes a la aleación tipo B, la cual ha sido enfriada al aire de forma más rápida. En la matriz eutéctica también se ven diferencias entre ambos tipos de aleaciones, siendo el espacio entre las laminillas de las fases Al(fcc-α) y Zn(hcp-β) mayor en la matriz de la aleación tipo A que en la tipo B. Todo esto es debido al mayor tiempo de solidificación que tiene la aleación tipo A frente a la B.

Figura 274. Microestructura obtenida mediante microscopía óptica a 500 aumentos de la aleación Base 96%Zn-4%Al, a) enfriada al aire y b) enfriada en el interior del horno.
Una vez observada la microestructura al microscopio óptico, se tomaron una muestra de cada tipo de aleación, A y B y se llevaron al microscopio electrónico para ver su microestructura. Las imágenes obtenidas se muestran en las figuras 275-278.

La figura 275 muestra dendritas de color claro correspondiente a la fase $\text{Zn(hcp-} \beta\text{)}$, rodeadas del agregado eutéctico compuesto por las fases $\text{Al(fcc-} \alpha\text{)}$ y $\text{Zn(hcp-} \beta\text{)}$. El espectro de la figura 276 realizado en una de las dendritas primarias de solidificación, muestra que son de fase $\text{Zn(hcp-} \beta\text{)}$, las cuales poseen en su red una pequeña cantidad de aluminio, 0,91%.

En la figura 277 se muestra la imagen obtenida mediante SEM de una muestra de la aleación tipo B y en la figura 278, el espectro realizado en la fase oscura del agregado eutéctico.

Figura 275. Microestructura obtenida mediante SEM de la aleación Base 96%Zn-4%Al tipo B.

Figura 276. Microanálisis semi-cuantitativo por EDX (Energy-dispersive X-ray) para la aleación 96%Zn-4%Al en la dendrita de fase Zn(hcp-β).

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Peso%</th>
<th>Atómico %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.91</td>
<td>2.18</td>
</tr>
<tr>
<td>Zn</td>
<td>99.09</td>
<td>97.82</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Figura 277. Microestructura obtenida mediante SEM de la aleación Base 96%Zn-4%Al tipo A.

Figura 278. Espectro de la composición de la lámina oscura del eutéctico en la aleación de composición 96%Zn-4%Al.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Peso%</th>
<th>Atómico %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>31.03</td>
<td>52.15</td>
</tr>
<tr>
<td>Zn</td>
<td>68.97</td>
<td>47.85</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
El espectro de la figura 278 realizado sobre la fase oscura del eutéctico binario, muestra que dicha fase está compuesta de forma mayoritaria de zinc, 68,97% frente a los 31,03% del aluminio. Como se observa en las imagen de la figura 277, la fase oscura analizada está constituida a su vez por zonas claras y oscuras como resultado de la transformación eutectoide que tiene lugar, \(Al(fcc-\alpha') \leftrightarrow Zn(hcp-\beta) + Al(fcc-\alpha) \) y el zinc es el elemento mayoritario.

Una vez caracterizada la aleación base, se pasa a realizar el ensayo térmicos correspondiente, con el fin de observar las temperaturas a las que tienen lugar las transformaciones eutéctica y eutectoide. En las gráficas de las figuras 279 y 280 se representan las etapas de calentamiento y enfriamiento para las muestras tipo A y B de la aleación base 96%Zn-4%Al.

![Figura 279. Análisis térmico diferencial de la etapa de calentamiento de la aleación base 96%Zn-4%Al.](image)

![Figura 280. Análisis térmico diferencial de la etapa de enfriamiento de la aleación base 96%Zn-4%Al.](image)

Al igual que para las aleaciones anteriormente estudiadas, de color rojo se representa la muestra tipo B que ha sido enfriada al aire y de color verde, la muestra tipo A enfriada en el interior del horno. En ambas figuras se obtiene dos picos, el primero y de menor intensidad correspondiente a la transformación eutectoide y el segundo de mayor intensidad a la reacción eutéctica. En la etapa de enfriamiento y unido al pico correspondiente a la reacción eutéctica aparece un hombro solapado con el pico y que es debido al comienzo de la solidificación de la aleación por formación de la fase \(Zn(hcp-\beta) \). El hecho de que aparezcan solapados ambos pico es debido a la proximidad en la temperatura de ambos procesos que provoca que el equipo de análisis los detecte casi de
Simultáneamente. Esta forma de picos se ha observado para las aleaciones que se han estudiado en los apartados anteriores. En la tabla 127 y 128, se recogen los datos de temperaturas asociadas a cada uno de los picos observados en las figuras 279 y 280.

Tablas 127 y 128. Resumen de los datos de temperatura obtenidos en el ensayo térmico DTA para la muestra 96%Zn-4%Al, correspondiente a la aleación base.

<table>
<thead>
<tr>
<th>Aleación Base 96%Zn-4%Al</th>
<th>Datos de Temperatura en la etapa de Calentamiento (Fig.279)</th>
<th>R. Eutética</th>
<th>R. Eutectoide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
<td>279,06</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38</td>
<td>386,14</td>
<td>279,21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aleación Base 96%Zn-4%Al</th>
<th>Datos de Temperatura en la etapa de Enfriamiento (Fig.280)</th>
<th>R. Eutética</th>
<th>R. Eutectoide</th>
<th>Solidificación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>375,11</td>
<td>364,53</td>
<td>259,14</td>
<td>248,46</td>
</tr>
<tr>
<td>Base B</td>
<td>371,54</td>
<td>358,76</td>
<td>259,49</td>
<td>248,08</td>
</tr>
</tbody>
</table>

Las temperaturas obtenidas en la etapa de calentamiento para la muestra tipo A en la reacción eutéctica coinciden con las que predice la simulación termodinámica [188] y las que se extraen de la bibliografía [161, 193], la de la muestra tipo B se aleja en torno a 3°C. Las temperaturas de la reacción eutectoide se obtienen prácticamente idénticas para ambos tipos de aleaciones, 279,06°C y 279,21°C, pero son 2°C superiores a las que marca la simulación [188] y la bibliografía [161, 193].

En la etapa de enfriamiento y siguiendo la tónica de todos los resultados obtenidos para todas las aleaciones ensayadas térmicamente, las temperaturas obtenidas en el análisis se alejan de manera considerable, entre 15-20°C de las que se han tomado como referencia, y este hecho puede ser debido a la propia sensibilidad del equipo utilizado. El dato de temperatura más interesante que se ha obtenido en la etapa de enfriamiento y que se va analizar para todas las aleaciones es la temperatura de inicio de la solidificación de la aleación, que termodinámicamente se produce a 404,89°C [188] y experimentalmente a 387°C para las muestras tipo A y a 382,30°C para las tipo B.
En la diagrama de fases de la figura 281 se van a plasmar los datos de temperatura obtenidos experimentalmente en el ensayo térmico resumidos en las tablas 127 y 128, las temperaturas que predice la simulación termodinámica, reflejados en la figura 273 y en la tabla 126, y los que se han tomado de referencia de la bibliografía [30, 31, 161, 193].

Para la última de las aleaciones estudiadas de composición 96%Zn-4%Al, las temperaturas que se obtienen experimentalmente mediante el ensayo térmico diferencial DTA, se ajustan prácticamente a las que se han tomado como referencia, por eso en la figura 281, aparecen superpuestos prácticamente todos los iconos representados, las pequeñas excepciones ya han sido comentadas anteriormente.

5.15 Simulación termodinámica de la aleación 96%Zn-4%Al + Adiciones de Bi.

Para la última de las aleaciones estudiadas de composición 96%Zn-4%Al, las temperaturas que se obtienen experimentalmente mediante el ensayo térmico diferencial DTA, se ajustan prácticamente a las que se han tomado como referencia, por eso en la figura 281, aparecen superpuestos prácticamente todos los iconos representados, las pequeñas excepciones ya han sido comentadas anteriormente.

Para la última de las aleaciones estudiadas de composición 96%Zn-4%Al, las temperaturas que se obtienen experimentalmente mediante el ensayo térmico diferencial DTA, se ajustan prácticamente a las que se han tomado como referencia, por eso en la figura 281, aparecen superpuestos prácticamente todos los iconos representados, las pequeñas excepciones ya han sido comentadas anteriormente.

5.15 Simulación termodinámica de la aleación 96%Zn-4%Al + Adiciones de Bi.

Una vez caracterizada la aleación base 96%Zn-4%Al, mediante microscopía óptica, electrónica y con los ensayos térmicos correspondientes se pasa a la exposición de los resultados de la aleación base con las diferentes adiciones de bismuto, en la tabla 129 se resumen las composiciones de todas las aleaciones que van a ser estudiadas a continuación.
En total, se van a caracterizar 14 aleaciones cuyas composiciones se muestran en la tabla 129. La composición del zinc va a estar comprendida entre el 94,1%-60%; la del aluminio entre 3,9%-2,5% y la de bismuto entre 2%-37,5%, así pues el zinc va a ser el componente mayoritario en la composición de todas las aleaciones ternarias resultantes.

Previa a la caracterización microestructural de cada una de las aleaciones, se realiza la simulación termodinámica con Thermo-Cal [188], con el propósito de identificar las fases presentes antes y después de cada una de las tres reacciones invariantes que tienen lugar en el sistema ternario Zinc-Aluminio-Bismuto, monotéctica a 376ºC \([L \leftrightarrow Al(fcc-\alpha') + Zn(hcp-\beta)]\), eutectoide a 278ºC \([Al(fcc-\alpha') \leftrightarrow Zn(hcp-\beta) + Al(fcc-\alpha)]\) y eutéctica a 253,9ºC \([L '' \leftrightarrow Zn(hcp-\beta) + Al(fcc-\alpha)+ Bi(romb)]\). En la figura 282 se muestra el diagrama ternario Zn-Al-Bi a 379ºC, una temperatura ligeramente superior a la reacción monotéctica.

Sobre el diagrama de la figura 282 se sitúa con una línea morada discontinua de forma aproximada las 14 aleaciones que van a ser estudiadas en este apartado y sobre cada región aparecida en el diagrama, las fases que predice Thermo-Calc [188] para esas regiones en particular.
El diagrama de la figura 282 se ha ampliado ligeramente, no mostrando todo el eje correspondiente al bismuto, con el fin de observar mejor las regiones bifásicas aparecidas en el extremo derecho del mismo. A la temperatura de 379°C, las fases presentes son líquidas y la correspondiente a la del zinc denotada en el diagrama como β y que ya ha comenzado a precipitar.

En la figura 283 que se muestra a continuación se representa ahora la isoterma del sistema ternario Zn-Al-Bi a la temperatura de 300°C, cuando ya ha tenido lugar la reacción monotéctica.

Figura 282. Isotema a 379°C, justo por encima de la transformación Monotéctica [188].

Figura 283. Isotema a 300°C, entre la transformación Monotéctica y la Eutectoide [188].
Como se observa en la isoterma de la figura 283, en todas las aleaciones se encuentran presentes las mismas fases, una líquida rica en bismuto y las ricas en aluminio, Al(fcc-α), y zinc, Zn(hcp-β), que provienen de la transformación monotéctica que ya ha tenido lugar anteriormente.

En la figura 284, se representa ahora la isoterma a 270°C, temperatura a la cual ya ha tenido lugar la reacción eutectoide ternaria, mediante la cual, la fase Al(fcc-α) se transforma en las fases Al(fcc-α) y Zn(hcp-β).

Como se observa en la figura 284, a 270°C, en todas las aleaciones Zn-Al-Bi van a estar presentes la fase líquida, rica en bismuto, la fase rica en zinc, denotada como β y la fase rica en aluminio denotada como α.

Por último, en el diagrama que de la figura 285 se representa la isoterma a la temperatura de 240°C. A esta temperatura ya ha tenido lugar la transformación eutéctica ternaria, \(L'' \leftrightarrow \text{Zn}(hcp-\beta) + \text{Al}(fcc-\alpha) + \text{Bi}(romb) \) y todas las aleaciones ya han solidificado por completo.

Figura 284. Isoterma a 270°C, entre la transformación Eutectoide y Eutéctica [188].
Una vez analizados las isotermas a las temperaturas de 379ºC, 300ºC, 270ºC y 240ºC mediante la representación en forma de diagramas ternarios, en las figuras 286-288 se muestra de forma particular para cada una de las 14 aleaciones que se van a caracterizar, la evolución de las fases presentes en función de la temperatura.

Figura 285. Isoterma a 240ºC después de la transformación Eutéctica [188].

Figura 286. Obtención mediante Thermo-Calc [188] de la evolución de la formación de las fases para la aleación 94%Zn-6%Al con contenidos crecientes de bismuto.
Figura 287. Obtención mediante Thermo-Calc [188] de la evolución de la formación de las fases para la aleación 96%Zn-4%Al con contenidos crecientes de bismuto.
En las figuras 286-288, se representan las curvas en colores correspondientes a la variación de las fases L', L'', $Al(fcc-\alpha)$, $Al(fcc-\alpha')$, $Zn(hcp-\beta)$ y $Bi(romb)$ con la temperatura. A diferencia de las curvas obtenidas para el material base y al igual que para los cuatro grupos de aleaciones estudiadas en apartados anteriores (20%Zn-80%Al; 40%Zn-60%Al; 85%Zn-15%Al y 94%Zn-6%Al), en este grupo de aleaciones se obtienen las nuevas curvas de las fases líquida, L'', y la correspondiente al bismuto, $Bi(romb)$. La forma de las curvas que se obtienen para este grupo de aleaciones es similar al obtenido para el grupo de 94%Zn-6%Al + adiciones de Bi, ya que ambas composiciones se encuentran muy cercanas en el diagrama de fases.

Siguiendo con el mismo esquema que para las aleaciones anteriores se parte de una temperatura de 700°C, a la cual todas las aleaciones están en estado líquido. En función de la aleación que se analice, la simulación termodinámica predice para las aleaciones con bajas adiciones de bismuto la fase líquida L' y la otra fase líquida, rica en bismuto, aparece como fase inicial a 700°C para adiciones de bismuto superiores al 20%.

Conforme disminuye la temperatura, llega un momento en el que van a coexistir las dos fase líquidas, L y L'', y la composición de una de ellas va ir aumentando con la temperatura en detrimento de la otra fase líquida. A medida que la temperatura sigue disminuyendo llega un momento en el que comienza a solidificar la aleación por formación de la fase $Zn(hcp-\beta)$ en forma de dendritas primarias. El inicio de la solidificación es la temperatura de 396°C, y es la misma para todas las aleaciones (96%Zn-4%Al + adiciones de Bi) pero en cambio, 8°C por debajo del comienzo de la

Figura 288. Obtención mediante Thermo-Calc [188] de la evolución de la formación de las fases para la aleación 94%Zn-6%Al con contenidos crecientes de bismuto.
solidificación de la aleación base 96%Zn-4%Al, que es a 404ºC, por tanto, la adición del bismuto a la aleación base provoca que comience antes la solidificación de la aleación por formación de la fase del zinc.

Comenzada ya la solidificación de las aleaciones a 396ºC y a medida que disminuye la temperatura, la composición de la fase Zn(hcp-β) va aumentando en detrimento de la composición de la fase líquida L’ y la composición de la segunda fase líquida L” rica en bismuto, se mantienen prácticamente constante, ya que como se ha comentado en aleaciones anteriores, la fase líquida L” sigue un camino de solidificación diferente al de la otra fase líquida L. El aumento progresivo en la composición de la fase Zn(hcp-β) y la disminución de la composición de la fase L continua hasta que la temperatura disminuye hasta 370,97ºC, temperatura a la cual tiene lugar la reacción monotéctica ternaria, cuyo resultado es la aparición de las fases Al(fcc-α’) y Zn(hcp-β) en los espacios interdendríticos dejados por la fase inicial que ha solidificado Zn(hcp-β).

La transformación monotéctica de acuerdo con la simulación termodinámica no tiene lugar ya para las aleaciones con las adiciones de bismuto del 50% y del 60%. En la tabla 130 se resumen las composiciones de las fases involucradas en dicha transformación para las principales adiciones de bismuto realizadas a la aleación base 96%Zn-4%Al.

Tabla 130. Variación de la composición de las fases durante la transformación monotéctica.

<table>
<thead>
<tr>
<th>FRACCIONES MOLARES</th>
<th>Aleación</th>
<th>L’</th>
<th>L”</th>
<th>Al(fcc-α’)</th>
<th>Zn(hcp-β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10%Bi</td>
<td>0,074</td>
<td>0,13</td>
<td>0,08</td>
<td>0,84</td>
<td></td>
</tr>
<tr>
<td>+20%Bi</td>
<td>0,042</td>
<td>0,24</td>
<td>0,06</td>
<td>0,74</td>
<td></td>
</tr>
<tr>
<td>+30%Bi</td>
<td>0,014</td>
<td>0,33</td>
<td>0,05</td>
<td>0,66</td>
<td></td>
</tr>
<tr>
<td>+40%Bi</td>
<td>-</td>
<td>0,41</td>
<td>0,04</td>
<td>0,58</td>
<td></td>
</tr>
<tr>
<td>+50%Bi</td>
<td>-</td>
<td>0,48</td>
<td>0,03</td>
<td>0,52</td>
<td></td>
</tr>
<tr>
<td>+60%Bi</td>
<td>-</td>
<td>0,53</td>
<td>0,02</td>
<td>0,46</td>
<td></td>
</tr>
</tbody>
</table>

La fase L” no participa en la reacción monotéctica, pero se incluye una columna con la variación de su composición con la temperatura para ver como varía en función de la cantidad de bismuto que lleva añadido la aleación base. Las composiciones de la fase L’ son las composiciones justo antes de que tenga lugar la reacción y las composiciones de las fases Al(fcc-α’) y Zn(hcp-β), las de justo después de la reacción. Como se ve en la tabla 130, la fase que participa mayoritariamente en la reacción
monotéctica es la del zinc, ya que la fracción molar de fase $Al(fcc-\alpha')$ que se forma es inferior a 0,1. Una vez que ha tenido lugar la reacción monotéctica las fases $Al(fcc-\alpha')$, $Zn(hcp-\beta)$ y L'' continúan su evolución con el descenso de la temperatura sin sufrir a penas cambio hasta llegar a 277,63ºC, temperatura tiene lugar la transformación eutectoide ternaria, mediante la cual y la fase $Al(fcc-\alpha')$ se transforma en las fases $[Al(fcc-\alpha) + Zn(hcp-\beta)]$. En la tabla 131 se resumen las composiciones de las fases que participan en dicha transformación, para las principales adiciones de bismuto.

Tabla 131. Variación de la composición de las fases durante la transformación eutectoide.

<table>
<thead>
<tr>
<th>Aleación</th>
<th>$Al(fcc-\alpha')$</th>
<th>$Al(fcc-\alpha)$</th>
<th>$Zn(hcp-\beta)$</th>
<th>L''</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10%Bi</td>
<td>0,053</td>
<td>0,025</td>
<td>0,87</td>
<td>0,10</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>0,048</td>
<td>0,022</td>
<td>0,79</td>
<td>0,18</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>0,043</td>
<td>0,020</td>
<td>0,72</td>
<td>0,25</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>0,038</td>
<td>0,018</td>
<td>0,66</td>
<td>0,31</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>0,035</td>
<td>0,016</td>
<td>0,61</td>
<td>0,37</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>0,032</td>
<td>0,015</td>
<td>0,56</td>
<td>0,41</td>
</tr>
</tbody>
</table>

La transformación eutectoide tiene lugar para todas las aleaciones y al igual que para la transformación monotéctica la fase $Zn(hcp-\beta)$ es la que participa mayoritariamente en la misma. Transcurrida la reacción eutectoide ternaria, y conforme sigue disminuyendo la temperatura, la composición de las fases $Al(fcc-\alpha)$ y $Zn(hcp-\beta)$ aumentan ligeramente hasta que tiene lugar la transformación eutéctica ternaria, mediante la cual, las aleaciones solidifican por completo y precipita la tercera fase sólida de acuerdo a la reacción $L''\leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) + Bi(romb)$. En la tabla 132 se resumen las composiciones de las fases que participan en la transformación eutéctica ternaria, y se observa la participación mayoritaria del bismuto en esta transformación, puesto que prácticamente toda la fase líquida L'' se transforma en bismuto y las composiciones de las fases $Al(fcc-\alpha)$ y $Zn(hcp-\beta)$ son prácticamente idénticas a las de la tabla 131.

Tabla 132. Variación de la composición de las fases durante la transformación eutéctica.

<table>
<thead>
<tr>
<th>Aleación</th>
<th>L''</th>
<th>$Bi(romb)$</th>
<th>$Zn(hcp-\beta)$</th>
<th>$Al(fcc-\alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10%Bi</td>
<td>0,097</td>
<td>0,09</td>
<td>0,88</td>
<td>0,028</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>0,18</td>
<td>0,16</td>
<td>0,80</td>
<td>0,025</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>0,25</td>
<td>0,23</td>
<td>0,74</td>
<td>0,023</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>0,30</td>
<td>0,28</td>
<td>0,69</td>
<td>0,022</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>0,36</td>
<td>0,33</td>
<td>0,61</td>
<td>0,020</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>0,40</td>
<td>0,37</td>
<td>0,60</td>
<td>0,009</td>
</tr>
</tbody>
</table>
5.15.1 96%Zn-4%Al + 2%Bi, caracterización microestructural.

Una vez realizadas las simulaciones termodinámicas para cada una de las composiciones en estudio, se comienza la caracterización de las mismas mediante microscopía óptica, electrónica de barrido, SEM. Las imágenes de la figura 289, muestran el aspecto de la microestructura para la aleación 96%Zn-4%Al + 2%Bi obtenida mediante microscopía óptica. Al igual que se ha hecho para las aleaciones anteriores, la aleación 96%Zn-4%Al + 2%Bi una vez fundida, se extrae una muestra para ser enfriada al aire de forma rápida y el resto de la aleación se mantiene en el horno, ya apagado, para que comience su proceso enfriamiento y solidificación de la forma más lenta posible. El propósito de esto es observar las diferencias que provoca el diferente tipo de enfriamiento realizado en la microestructura entre ambas muestras.

![Imagen de microestructura](Figura 289. Microestructura obtenida mediante microscopía óptica a 500 aumentos de la aleación 96%Zn-4%Al + 2%Bi, a) enfriada al aire y b) en el interior del horno.)

El enfriamiento lento de la aleación provoca que la microestructura se desarrolle más, y las dendritas primaria de solidificación de fase \(\text{Zn(hcp-}\beta) \) que se observan en la imagen b) de la figura 289 sean de un tamaño mayor que las de la imagen a). Las manchitas oscuras que se observan en las imágenes a) y b) son fruto de la oxidación de la muestra en esas zonas. El aspecto de la microestructura monotéctica ternaria, compuesta por laminillas alternas de fase \(\text{Al(fcc-}\alpha') \) y \(\text{Zn(hcp-}\beta) \) es similar para ambos tipos de muestras, quizás que en la muestra tipo A , el espaciado entre laminillas sea de mayor tamaño, fruto del enfriamiento lento que sufre dicha muestra.

Una vez observada la microestructura al microscopio óptico se toman un par de muestras de cada tipo se embuten y se llevan a analizar al SEM. Las imágenes obtenidas se muestran en la figura 290.
Resultados y Discusión

En las imágenes a) y b) de la figura 290, se ven las dendritas primarias de solidificación correspondientes a la fase del Zn(hcp-β) rodeadas del agregado monotéctico [Al(fcc-α') + Zn(hcp-β)]. En la imagen b) se observa una región blanca adherida a la fase Al(fcc-α) de color oscura y sobre ella se realiza una análisis puntual cuyo resultado se refleja en la tabla 133.

Tabla 133. Microanálisis semi-cuantitativo por EDX (Energy-dispersive X-ray) de la aleación 96%Zn-4%Al+2%Bi, realizado en el punto rojo de la imagen de la figura 290.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>%Peso</th>
<th>%Atómico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.36</td>
<td>2.25</td>
</tr>
<tr>
<td>Zn</td>
<td>9.63</td>
<td>24.92</td>
</tr>
<tr>
<td>Bi</td>
<td>90.01</td>
<td>72.83</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

La zona blanca analizada coincide con en la fase líquida L'', rica en bismuto y que solidificada al final dando lugar a la reacción eutéctica ternaria, $L'' \leftrightarrow Al(fcc-\alpha) + Zn(hcp-\beta) + Bi(romb)$. Como se ha visto en la simulación termodinámica, el aluminio es el elemento que participa en menor medida en la transformación eutéctica ternaria, y con este análisis se comprueba que es así.

En la figura 291 se muestra un mapping realizado a la aleación 96%Zn-4%Al+2%Bi con el propósito de ver como se distribuyen los elementos que componen la aleación ternaria en estudio Zn-Al-Bi en la aleación. Este análisis en forma de mapping se ha realizado en una muestra tipo A, ya que la microestructura se desarrolla más en estas aleaciones y se observan con más claridad las diferentes zonas de la microestructura.
Como se observa en el mapping de la figura 291, el aluminio se localiza en las regiones oscuras de la imagen a), que quedan reflejadas como zonas blancas en la imagen b). El zinc, que es el elemento mayoritario en la aleación, en la imagen c) se observa una distribución homogénea del mismo, exceptuando las regiones oscuras que están ocupadas por la fase rica en bismuto, como se ve en la imagen d). Las zonas ricas en bismuto se localizan preferentemente pegadas a las zonas ricas en aluminio. Este hecho puede ser debido a que el bismuto no disuelve apenas nada de aluminio, mientras que de zinc sí disuelve algo más. La distribución de los elementos Zn, Al y Bi, que se ha visto en el mapping de la figura 291, se ha observado también para las aleaciones que se han estudiado con anterioridad 85%Zn-15%Al y 94%Zn-6%Al.

Una vez observada y analizada la microestructura de la aleación 96%Zn-4%Al + 2%Bi al microscopio óptico y electrónico, y siguiendo el esquema de discusión de resultados de aleaciones anteriores, se analizan los resultados obtenidos en el ensayo térmico correspondiente. Para ello, se toma una muestra de la aleación tipo A y otra de la tipo B y se las somete a un programa de temperatura controlado. Las curvas tipo DTA, se muestran en las figuras 292 y 293.
Resultados y Discusión

En las figuras 292, se representan las diferentes curvas obtenidas en la etapa de calentamiento y en la figura 293 como en la de enfriamiento. El código de colores es el mismo que para las aleaciones anteriores, rojo y verde para las curvas de las aleaciones base 96%Zn-4%Al y azul y negro para las que tienen adición de bismuto. Si nos fijamos en las curvas roja y verde de la etapa de calentamiento, se observan dos picos, el primero en torno a 279ºC correspondiente a la transformación eutectoide binaria y el segundo a 380ºC correspondiente a la reacción eutéctica binaria. En las curvas azul y negra se observan tres picos, el primero muy débil a 251ºC, correspondiente a la reacción eutéctica ternaria y que solo se ha observado en la muestra tipo A, un segundo pico a 278ºC, correspondiente con la transformación eutectoide ternaria y un tercer pico a 376ºC, de mayor intensidad que corresponde con la reacción monotéctica ternaria.

El pequeño tamaño del pico correspondiente a la reacción eutéctica ternaria es debido a la pequeña cantidad de bismuto añadida, 2%Bi, que provoca que dicha reacción a penas se produzca.

En las curvas de la etapa de enfriamiento mostradas en la figura 293, se observan los mismos picos que en la etapa de calentamiento, pero desfasados en temperatura, hecho observado en las aleaciones anteriormente estudiadas debido a la sensibilidad del equipo utilizado. El único hecho a destacar, es la aparición de un pico solapado al pico de la transformación monotéctica ternaria y que es debido al proceso de solidificación de la aleación. Las temperaturas correspondientes a los máximos de los picos y las resultantes de la integración de los mismos, se muestran en las tablas 134 y 135.
Tablas 134 y 135. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 2%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 292)</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
<td>Pico Máximo (ºC)</td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
<td>279,16</td>
<td>283,81</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38</td>
<td>386,14</td>
<td>279,18</td>
<td>284,50</td>
</tr>
<tr>
<td>Muestra A</td>
<td>248,31</td>
<td>251,64</td>
<td>278,53</td>
<td>285,12</td>
</tr>
<tr>
<td>Muestra B</td>
<td>-</td>
<td>-</td>
<td>278,68</td>
<td>284,44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 293)</th>
<th>Solidificación</th>
<th>Monotéctica</th>
<th>Eutectoide</th>
<th>Eutéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
<td>Pico Máximo (ºC)</td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>387</td>
<td>375,11</td>
<td>-</td>
<td>-</td>
<td>375,11</td>
</tr>
<tr>
<td>Base B</td>
<td>382,30</td>
<td>371,54</td>
<td>-</td>
<td>-</td>
<td>371,54</td>
</tr>
<tr>
<td>Muestra A</td>
<td>377,25</td>
<td>369,01</td>
<td>369,01</td>
<td>355,13</td>
<td>259,63</td>
</tr>
<tr>
<td>Muestra B</td>
<td>375,81</td>
<td>365,80</td>
<td>365,80</td>
<td>349,07</td>
<td>257,84</td>
</tr>
</tbody>
</table>

En las tablas 134 y 135 también se incluyen los datos de temperatura correspondientes a las aleaciones bases para poder comparar unas con otras.

Al igual que ha pasado con las aleaciones anteriores, los datos de temperatura obtenidos en la etapa de enfriamiento se diferencian en gran medida de los de la etapa de calentamiento y de las de la bibliografía [30, 31], por tanto, se utilizarán las temperaturas de la etapa de calentamiento para la discusión de resultados, exceptuando los datos de temperatura obtenidos experimentalmente del proceso de solidificación de la tabla 135, que se compararán con los que predice la simulación termodinámica con Thermo-Calc [188].

Si nos fijamos en los datos obtenidos para las aleaciones base, la temperatura de inicio del pico de la reacción eutéctica de la muestra tipo A, 380,43°C es la que mejor se aproximan a las de la bibliografía 381°C [161, 193] y a la que predice la simulación termodinámica, 380,89°C [188] En cambio, para la reacción eutectoide, se obtienen temperaturas 2°C por encima de la bibliográfica y de la de simulación 277,2°C [161, 188, 193]. En cuanto a las temperaturas de las transformaciones eutectoide y monotéctica ternarias, son prácticamente iguales a las de bibliografía: 376°C monotéctica y 278,1°C eutectoide [30, 31].
Para la reacción eutéctica ternaria el valor obtenido experimentalmente se aleja del esperado por la bibliografía de 253,9°C [30, 31], pero es semejante al obtenido para esta transformación en las aleaciones anteriormente estudiadas, al situarse en torno a los 251-252°C.

En cuanto a las temperaturas del proceso de solidificación por formación de la fase $\text{Zn}(\text{hcp-}\beta)$ la simulación termodinámica las fija en 404,89°C para la aleación base y en 397,79°C para la aleación con adición del 2%Bi. En cambio experimentalmente se obtienen las temperaturas de 387-382,30°C y 375,81-377,25°C respectivamente, existiendo por tanto, una diferencia entre los datos teóricos y los experimentales de 20°C. Las temperaturas del proceso de solidificación se analizarán al final de este apartado para ver el efecto que tienen las diferentes adiciones de bismuto en dicho proceso.

5.15.2 96%Zn-4%Al + 4%Bi, caracterización microestructural.

Después de estudiar la aleación con la adición del 2%Bi, se le añade a la aleación base un 4% de bismuto, y se procede de igual forma que para la aleación anterior, una vez que ha solidificado la aleación ternaria resultante, se toma una muestra de la aleación que ha sido enfriada en el interior del horno, tipo A y otra muestra de la que ha sido enfriada al aire y se observa su microestructura. Las imágenes obtenidas en el microscopio óptico para estas muestras se plasman en la figura 294.

Figura 294. Microestructura obtenida mediante microscopía óptica a 200 aumentos de la aleación 96%Zn-4%Al + 4%Bi, a) enfriada al aire y b) en el interior del horno.
Resultados y Discusión

En la aleación 96%Zn-4%Al +4%Bi, mostrada en la imagen b) figura 294 se ve más claro que en la aleación anterior de composición 96%Zn-4%Al + 2%Bi que el tamaño de las dendritas de fase Zn(hcp-β) y el espacio entre láminas del monotéctico [Al(fcc-α’) + Zn(hcp-β)], es mucho mayor en la aleación tipo A que en la B, debido al diferente tipo de enfriamiento que han sufrido. Para la adición de un 4% de bismuto, también se aprecia que el líquido rico en bismuto, L”, una vez que solidifica, se sitúa en los bordes de las dendritas primarias Zn(hcp-β), al igual que se ha venido observando en todas las aleaciones ternarias.

Tras la caracterización de la aleación mediante microscopía óptica, se lleva una muestra al SEM para ver con más detalle la microestructura. La imagen obtenida en el mismo se muestra en la figura 295.

La imagen de la figura 295 es de una zona concreta de la microestructura de la aleación 96%Zn-4%Al + 4%Bi, la correspondiente a las láminas oscuras formadas tras la reacción monotéctica \(L’ \leftrightarrow L” + Al(fcc-\alpha’) + Zn(hcp-\beta) \), y que a su vez, dan lugar a la transformación eutectoide: \(Al(fcc-\alpha’) \leftrightarrow Al(fcc-\alpha)+ Zn(hcp-\beta) \). Por esta razón se ven dentro de la propia lámina de la fase \(Al(fcc-\alpha’) \) láminas alternas de las fases \(Al(fcc-\alpha) \) y Zn(hcp-β).

Tras la observación de la microestructura al microscopio óptico y electrónico, se realiza el ensayo térmico correspondiente. En las figuras 296 y 297, se muestran los resultados de este ensayo realizado a las muestra tipo A y tipo B de la aleación 96%Zn-4%Al + 4%Bi.
Los picos obtenidos en ambas figuras son similares a los obtenidos para la aleación anterior, con la única diferencia que ahora en la aleación tipo B, curva negra de la figura 296, también se obtiene el pico correspondiente a la reacción eutéctica ternaria. El tamaño o intensidad de este pico sigue siendo muy pequeña y es que ni al microscopio óptico ni al SEM se ha podido observar la microestructura característica resultante de esta transformación, formada por espigas oscuras ricas en zinc sobre una microestructura clara rica en bismuto [30, 31].

Los datos de temperatura que aparecen adosados a cada uno de los picos obtenidos en el ensayo térmico, se recogen en las tablas 136 y 137.

Tabla 136. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 4%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 296)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
</tr>
<tr>
<td>Base B</td>
<td>378,39</td>
<td>384,14</td>
</tr>
<tr>
<td>Muestra A</td>
<td>248,49</td>
<td>251,76</td>
</tr>
<tr>
<td>Muestra B</td>
<td>248,20</td>
<td>251,32</td>
</tr>
</tbody>
</table>
La única diferencia a destacar con respecto a las temperaturas obtenidas para la aleación con un 2%Bi, es que la transformación eutéctica ternaria ya se detecta para ambas muestras, la A y la B y sus valores son prácticamente idénticos, 251,76°C y 251,32°C. El resto de temperaturas para las reacciones eutectoide y monotéctica son similares a las de la aleación con un 2%Bi.

En cuanto a la etapa de enfriamiento resaltar que, se pierde la señal correspondiente a la transformación eutéctica ternaria y el resto de temperaturas, siguen estando muy alejadas de las de la etapa de calentamiento y de las citadas en bibliografía [30, 31]. El proceso de solidificación para la muestra tipo A comienza a 375,44°C, dos grados menos que en la aleación con adición del 2%Bi.

5.15.3 96%Zn-4%Al + 6%Bi, caracterización microestructural.

La siguiente aleación ternaria a estudiar es la que lleva un 6% de bismuto, las imágenes obtenidas en le óptico y en el SEM, se muestran en la figura 298.
En la imagen a) se observa las dendritas primaria de solidificación de fase $\text{Zn}(hcp-\beta)$ sobre el agregado monotéctico $[\text{Al}(fcc-\alpha') + \text{Zn}(hcp-\beta)]$ y la fase rica en bismuto en las zonas interdendríticas de la fase $\text{Zn}(hcp-\beta)$. En la imagen b) de la figura 298 se observa de forma clara la distribución de la fase líquida L'' una vez que ha solidificado, como zonas blancas. Para ver esto con más detalle, en la imagen de la figura 299, se realiza una ampliación de esta imagen y se detallan cada una de las fases aparecidas.

![Figura 299. Detalle ampliado de la imagen b) de la figura 298.](image)

Al igual que se observaba en la figura 298 el líquido L'' rico en bismuto cuando solidifica lo hace preferencialmente pegado a la fase del aluminio $\text{Al}(fcc-\alpha')$, de color negro oscuro en la imagen 299, que a su vez se descompone mediante la transformación eutectoide ternaria en las fases $\text{Al}(fcc-\alpha)$ y $\text{Zn}(hcp-\beta)$, que se observan como zonas oscuras intercaladas con regiones claras, (una de estas zonas está marcada con un círculo rojo discontinuo).

El análisis mediante microscopía óptica y electrónica ha servido para observar las fases y su distribución a lo largo de la microestructura de la aleación. A continuación, mediante los ensayos térmicos se analizarán las temperaturas a las cuales tienen lugar los cambios de fases provocados por las reacciones invariantes que tienen lugar y que dan lugar a la microestructura que se acaba de comentar. En las figuras 300, 301 y tablas 138 y 139, se resumen los resultados del ensayo térmico.
Comparando los resultados obtenidos con los de las aleaciones con adiciones de un 2% y 4%Bi, la temperatura de la reacción eutéctica ternaria es superior para la muestra tipo A es un grado mayor y las temperaturas del proceso de solidificación son prácticamente iguales, 375°C.
5.15.496%Zn-4%Al + 8%Bi, caracterización microestructural.

A continuación en la figura 302 se muestran las imágenes obtenidas en la caracterización de la aleación con un 8% de adición.

![Figura 302. Microestructura obtenida mediante microscopía óptica a 50 aumentos de la aleación 96%Zn-4%Al + 8%Bi, a) enfriada en el interior del horno y b) detalle de la microestructura eutéctica de la imagen a).](image)

En las imágenes a) y b) de la figura 302 se observa que con la adición de un 8% de bismuto a la aleación base 96%Zn-4%Al, ya se empieza a formar la microestructura característica del eutéctico ternario, aunque las espigas ricas en zinc que se han visto en otras aleaciones no se aprecian aún para esta aleación. Esta zona se localiza en el extremo inferior de la muestra, es decir en la zona baja del lingote de solidificación. El resto de la microestructura que se observa en la figura 302 es igual a la que se ha visto en aleaciones anteriores.

En las figuras 303 y 304 y en las tablas 140 y 141 se presentan los resultados del ensayo térmico realizado a las muestras de la aleación 96%Zn-4%Al + 8%Bi.

![Figura 303. Análisis térmico diferencial de la etapa de calentamiento de la aleación 96%Zn-4%Al + 8%Bi.](image)

![Figura 304. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 96%Zn-4%Al + 8%Bi.](image)
Resultados y Discusión

Tablas 140 y 141. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 8%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 303)</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
<td>279,04</td>
<td>284,34</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38</td>
<td>386,14</td>
<td>279,39</td>
<td>284,75</td>
</tr>
<tr>
<td>Muestra A</td>
<td>-</td>
<td>-</td>
<td>278,73</td>
<td>285,42</td>
</tr>
<tr>
<td>Muestra B</td>
<td>250,07</td>
<td>252,16</td>
<td>277,83</td>
<td>282,98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 304)</th>
<th>Solidificación</th>
<th>Monotéctica</th>
<th>Eutectoide</th>
<th>Eutéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>387</td>
<td>375,11</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base B</td>
<td>382,30</td>
<td>371,54</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muestra A</td>
<td>-</td>
<td>366,24</td>
<td>353,92</td>
<td>261,24</td>
<td>253,36</td>
</tr>
<tr>
<td>Muestra B</td>
<td>375,81</td>
<td>368,51</td>
<td>368,51</td>
<td>353,90</td>
<td>259,71</td>
</tr>
</tbody>
</table>

Observando los datos de temperatura de las tablas 140 y 141 hay que destacar que el hecho de que se haya observado al microscopio óptico la microestructura característica resultante de la transformación eutéctica ternaria, no ha provocado cambios en las temperaturas obtenidas para dicha transformación en el ensayo térmico, al contrario, en la muestra tipo A no se detecta el pico correspondiente a la misma y en la muestra tipo B la temperatura obtenida de 252,16°C es similar a la de 252,32°C obtenida para la aleación anterior de composición 96%Zn-4%Al + 6%Bi.

En la etapa de calentamiento hay que destacar también el valor anómalo de temperatura obtenido en la muestra tipo A en la reacción eutectoide de 380°C, cuatro grados superior a la obtenida en aleaciones anteriores, que era de 376°C.

En cuanto a la etapa de enfriamiento, hay que destacar que la temperatura obtenida para el comienzo de la solidificación por formación de la fase $Zn(hcp-\beta)$ es similar a la obtenida en aleaciones anteriores de 375°C, por tanto, el aumento en el contenido en bismuto en la aleación base 96%Zn-4%Al no está provocando cambios de momento en dicho proceso.
5.15.5 96%Zn-4%Al + 10%Bi, caracterización microestructural.

En la figura 305, que se muestra a continuación, se observan las microestructuras de las muestra tipo A de la aleación 96%Zn-4%Al + 10%Bi, la de la muestra tipo B no se ha incluido porque no se ha podido obtener una imagen clara de la misma.

![Figura 305. a) y b) Microestructura obtenida mediante microscopía óptica a 200 aumentos de la muestra tipo A de la aleación 96%Zn-4%Al + 10%Bi.](image)

A diferencia de la aleación anterior que tenía un 8%Bi, con un 10%Bi no se ha observado la microestructura correspondiente al eutéctico ternario durante la inspección de la muestra al microscopio óptico. La microestructura de la imagen a) está formada por dendritas de fase $\text{Zn}(\text{hcp-}\beta)$ de color claro rodeadas del agregado monotéctico en forma de laminillas alternas de fase $\text{Zn}(\text{hcp-}\beta)$ y $\text{Al}(\text{fcc-}^\prime\alpha)$. La imagen b) de la figura 305 corresponde a otra zona de la muestra que observada, en la que no se aprecian dendritas de fase $\text{Zn}(\text{hcp-}\beta)$, pero por el contrario se observa claramente varios límites de grano donde se sitúa la fase rica en bismuto, que se forma tras la reacción eutéctica ternaria $L'' \leftrightarrow \text{Zn}(\text{hcp-}\beta) + \text{Al}(\text{fcc-}^\prime\alpha) + \text{Bi(romb)}$.

Tras la caracterización de la aleación ternaria 96%Zn-4%Al + 10%Bi mediante microscopía óptica, se toman un par de muestras de las aleaciones tipo A y tipo B y se las somete a un programa de temperatura controlado, consistente en una etapa inicial de calentamiento con una velocidad de calentamiento conocida, seguida de un etapa de enfriamiento. Los resultados de este ensayo térmico diferencial, se muestran en las curvas de las figuras 306 y 307 y las temperaturas asociadas a cada uno de los picos, se resumen en las tablas 142 y 143.
Resultados y Discusión

Analizando las temperaturas de las tablas 142, para la transformación eutéctica se obtiene el mayor valor de temperatura si se compara con las temperaturas obtenidas en aleaciones anteriores que no subían de los 252ºC. El nuevo valor obtenido de 253,19ºC, se ajusta casi por completo al extraído de la bibliografía de 253,9ºC [30, 31].

Tabla 142 y 143. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 10%Bi.

![Figura 306. Análisis térmico diferencial de la etapa de calentamiento de la aleación 96%Zn-4%Al + 10%Bi.](image)

![Figura 307. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 96%Zn-4%Al + 10%Bi.](image)

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 306)</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 307)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico MÁximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38</td>
<td>386,14</td>
</tr>
<tr>
<td>Muestra A</td>
<td>250,44</td>
<td>253,19</td>
</tr>
<tr>
<td>Muestra B</td>
<td>249</td>
<td>252,41</td>
</tr>
</tbody>
</table>

96%Zn–4%Al + 10% de Bismuto

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 307)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>387,10</td>
</tr>
<tr>
<td>Base B</td>
<td>383,31</td>
</tr>
<tr>
<td>Muestra A</td>
<td>-</td>
</tr>
<tr>
<td>Muestra B</td>
<td>-</td>
</tr>
</tbody>
</table>
Las temperaturas obtenidas para las reacciones eutectoide y monotéctica ternaria, no sufren variación comparadas con las de las aleaciones anteriores 96%Zn-4%Al + (2%Bi, 4%Bi, 6%Bi y 8%Bi), por tanto, las sucesivas adiciones de bismuto a la aleación base no altera las temperaturas de dichas transformaciones.

En cuanto a la etapa de enfriamiento, para el juego de aleaciones 96%Zn-4%Al + 10%Bi, no se ha detectado el hombro solapado al de la reacción monotéctica y que señala el comienzo del proceso de solidificación por formación de la fase $\text{Zn(hcp-}\beta^\prime)$, así que no se va poder tomar estos datos para la comparación global cuando se analice la influencia del contenido en bismuto en este proceso.

5.15.6 96%Zn-4%Al + 12%Bi, caracterización microestructural.

La siguiente adición de bismuto realizada a la aleación base 96%Zn-4%Al es del 12% de bismuto. La aleación una vez que ha solidificado se toma una muestra y se lleva al microscopio óptico para observar su microestructura. Una de las imágenes obtenida para la muestra de la aleación tipo A se refleja en la figura 308.

![Figura 308. Microestructura obtenida mediante microscopía óptica a 200 aumentos de la aleación 96%Zn-4%Al + 12%Bi enfriada en el interior del horno.](image)

Al igual que ha pasado para la aleación anterior 96%Zn-4%Al + 10%Bi, no se ha podido obtener una imagen los suficientemente clara de la muestra tipo B, ya que las dendritas son muchas y muy pequeñas y se confunden con la propia microestructura desarrollada tras la reacción monotéctica. El aspecto de la microestructura de la muestra tipo A es similar a la obtenida anteriormente en otras aleaciones, y para esta muestra en concreto, tampoco se ha observado al óptico la microestructura eutéctica ternaria.
Terminada la inspección visual de la microestructura, se realiza el ensayo térmico correspondiente. Las curvas obtenidas en las etapas de calentamiento y enfriamiento se muestran en las figuras 309 y 310 respectivamente. Las temperaturas máximas de los picos y las obtenidas en la integración de los mismos, se resumen a continuación en las tablas 144 y 145 para su análisis posterior.

Tabla 144 y 145. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 12%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 309)</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
<td>279,04</td>
<td>284,34</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38</td>
<td>386,14</td>
<td>279,18</td>
<td>284,75</td>
</tr>
<tr>
<td>Muestra A</td>
<td>250,63</td>
<td>253,13</td>
<td>278,83</td>
<td>285,40</td>
</tr>
<tr>
<td>Muestra B</td>
<td>249,03</td>
<td>252,23</td>
<td>278,57</td>
<td>283,57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 310)</th>
<th>Solidificación</th>
<th>Monotéctica</th>
<th>Eutectoide</th>
<th>Eutéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>387,10</td>
<td>375,10</td>
<td>-</td>
<td>-</td>
<td>259,60</td>
</tr>
<tr>
<td>Base B</td>
<td>383,31</td>
<td>371,55</td>
<td>-</td>
<td>-</td>
<td>259,65</td>
</tr>
<tr>
<td>Muestra A</td>
<td>-</td>
<td>-</td>
<td>365,59</td>
<td>349</td>
<td>259,93</td>
</tr>
<tr>
<td>Muestra B</td>
<td>-</td>
<td>-</td>
<td>367,88</td>
<td>353,57</td>
<td>259,61</td>
</tr>
</tbody>
</table>
Los resultados obtenidos en el ensayo son muy similares, tanto en la etapa de calentamiento como en la de enfriamiento a los obtenidos para la aleación 96%Zn-4%Al + 10%, la temperatura de la reacción eutéctica ternaria de 253,13°C, la de la reacción eutectoide de 278,83°C y la de la monotéctica de 376,58°C son iguales a las de la bibliografía [30, 31]. Y para la etapa de enfriamiento, tampoco se ha podido obtener la temperatura de inicio de la solidificación de la aleación.

5.15.7 96%Zn-4%Al + 14%Bi, caracterización microestructural.

En las imágenes a) y b) de la figura 311 se muestra el aspecto de la microestructura para una muestra tipo A y tipo B de la aleación base 96%Zn-4%Al a la que se le ha añadido un 14% de bismuto.

En la imagen a) de la figura 311 se observa una distribución homogénea a lo largo de toda la microestructura de la fase líquida L” solidificada rica en bismuto. Estas regiones se sitúan preferencialmente pegados a las dendritas primarias de fase Zn(hcp-β). También se observa en esta imagen, que en la muestra tipo B no se ha desarrollado la microestructura característica tras la reacción eutéctica ternaria, esto es debido a que al enfriar al aire al muestra no damos tiempo a que la aleación llegue a su estado de equilibrio y el bismuto entonces se queda distribuido como se ve en la imagen a).

En la imagen b) de la figura 311 correspondiente a la muestra que ha sido enfriada en el interior del horno sí que se observan las espigas negras ricas en zinc embebidas en la matriz de color claro y rica en bismuto.
La composición de la muestra tipo A y la tipo B son exactamente las mismas, la única diferencia entre ellas es el tipo de enfriamiento que han tenido, que provoca que la tipo B solidifique más rápido que la tipo A y por tanto, que no se vea al microscopio óptico la microestructura que se desarrolla tras producirse la reacción eutéctica ternaria.

Una vez que se han observado al óptico ambos tipos de muestras, se las somete al ensayo térmico realizado para todas las aleaciones anteriores. Las etapas de calentamiento y enfriamiento obtenidas en el mismo quedan reflejadas en las figuras 312 y 313.

![Figura 312. Análisis térmico diferencial de la etapa de calentamiento de la aleación 96%Zn-4%Al + 14%Bi.](image)

![Figura 313. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 96%Zn-4%Al + 14%Bi.](image)

En la figura 313, correspondiente a la etapa de enfriamiento, se vuelve a obtener el hombro solapado al pico de la reacción monotéctica que nos permite conocer el comienzo de la solidificación de la aleación. En la etapa de calentamiento hay que destacar la intensidad del pico de la reacción eutéctica ternaria para la muestra A. Todas las temperaturas se ambas figuras se resumen en las tablas 146 y 147.

Tabla 146. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 14%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 312)</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
<td>279,04</td>
<td>284,34</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38</td>
<td>386,14</td>
<td>279,18</td>
<td>284,75</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,31</td>
<td>255,39</td>
<td>278,22</td>
<td>283,63</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,21</td>
<td>253,69</td>
<td>277,60</td>
<td>282,71</td>
</tr>
</tbody>
</table>
Observando los datos correspondientes a la transformación eutéctica ternaria en el calentamiento, se obtienen valores mayores que para la adición del 12%, en concreto de 255,39°C para la muestra A y 253,69°C para la B. La alta temperatura de la de A se corresponde con el gran tamaño del pico obtenido y que se ha comentado anteriormente. Este hecho puede tener su explicación en que la aleación 96%Zn-4%Al + 14% de bismuto es la primera en la que se ha observado al microscopio óptico perfectamente desarrollada la microestructura eutéctica ternaria. En aleaciones anteriores también se ha observado que cuando al microscopio óptico se veía con claridad dicha microestructura esto se traducía en valores de temperaturas muy cercanos e incluso superiores a los extraídos en bibliografía [30, 31] de la reacción eutéctica ternaria. Las temperaturas e las reacciones eutectoide y monotéctica ternaria no varían con significativamente con respecto a aleaciones anteriores y las de la solidificación desciende 2°C para la tipo A y 3°C para la tipo B.

Tabla 147. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 14%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 313)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
<td>Mono-téctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>387</td>
<td>375,11</td>
</tr>
<tr>
<td>Base B</td>
<td>382,30</td>
<td>371,54</td>
</tr>
<tr>
<td>Muestra A</td>
<td>374</td>
<td>369,35</td>
</tr>
<tr>
<td>Muestra B</td>
<td>372,92</td>
<td>367,02</td>
</tr>
</tbody>
</table>

5.15.8 96%Zn-4%Al + 16%Bi, caracterización microestructural.

La siguiente aleación estudiada es la de composición 96%Zn-4%Al + 16%Bi y la forma de operar para la caracterización microestructural es la misma que la se ha venido realizando hasta ahora. En la figura 314 se reflejan dos imágenes correspondientes a la muestra tipo A que una vez fundida, ha sido enfriada lentamente en el interior del horno. De la muestra tipo B no se incluyen imágenes porque al igual que para las aleaciones 96%Zn-4%Al + 10%Bi y 96%Zn-4%Al + 12%Bi, no se han podido obtener imágenes claras de su microestructura.
En la imagen b) de la figura 314 se ve que con la adición de un 16% de bismuto se observa mayor cantidad de microestructura eutéctica ternaria, caracterizada por las espigas oscuras de color negro de la fase Zn(hcp-β) rodeadas de la zona clara, mayoritaria en bismuto, el aluminio a penas participa en la transformación eutéctica. Como en otras aleaciones donde se ha observado la microestructura eutéctica ternaria 85%Zn-15%Al + (18%Bi, 60%Bi); 94%Zn-6%Al + (10%, 12%, 14%, 16%, 18%, 20%, 30% y 40%), la temperatura que se ha obtenido para la reacción eutéctica ha sido mayor que para las aleaciones donde no se ha observado la microestructura eutéctica ternaria.

En la imagen a) se observa otra zona de la muestra con dendritas de fase Zn(hcp-β) rodeadas del agregado monotéctico \([\text{Zn(hcp-β)} + \text{Al(fcc-α')}\]) y las zonas ricas en bismuto en los bordes interdendríticos. Así pues, en la muestra tipo A de la aleación 96%Zn-4%Al + 16%Bi, en la parte inferior del lingote de solidificación se sitúa la microestructura eutéctica ternaria y encima de ella, la microestructura de dendritas y agregado monotéctico.

Tras la caracterización microestructural al óptico, se toma una muestra de la aleación tipo A y otra de tipo B y se introducen en el equipo de análisis térmico para realizar el ensayo correspondiente. Las curvas de calentamiento y enfriamiento para ambas muestras, junto con las tablas resumen de las temperaturas de todos los picos, se muestran en las gráficas 315, 316 y tablas 148 y 149.
Las curvas obtenidas en las etapas de calentamiento y enfriamiento son muy similares a las obtenidas para la aleación anterior de composición 96%Zn-4%Al + 16%Bi. También se obtiene un pico muy intenso en la muestra tipo A.

Tabla 148 y 149. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 16%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>96%Zn-4%Al + 16% de Bismuto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datos de temperatura en la etapa de calentamiento (Fig. 315)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,26</td>
</tr>
<tr>
<td>Muestra B</td>
<td>250,96</td>
</tr>
</tbody>
</table>

La temperatura que se ha obtenido en la etapa de calentamiento para la reacción eutéctica es de 255,04ºC muy similar a la de aleación con el 14%Bi. La temperatura de la reacción monotéctica aumenta 1ºC y se sitúa en los 379,47ºC y la de la reacción...
eutectoide se mantiene en los 278°C. Respecto a la temperatura de solidificación y comparada con la obtenida para la aleación del 14%Bi se produce un aumento de 4°C, es decir que solidifica antes.

5.15.9 96%Zn-4%Al + 18%Bi, caracterización microestructural.

En las imágenes que se muestran a continuación en la figura 317 corresponden con la caracterización al microscopio óptico de la aleación ternaria de composición 96%Zn-4%Al + 18%Bi.

![Figura 317. a) y b)Microestructura obtenida mediante microscopía óptica a 200 aumentos de la aleación 96%Zn-4%Al + 18%Bi enfriada en el interior del horno.](image)

De la muestra tipo B tampoco se han podido obtener buenas imágenes donde se vea con claridad las diferentes fases que las componen su microestructura. Las imágenes a) y b) muestran un aspecto idéntico al observado para la aleación con un 16% de bismuto.

En cuanto a los resultados térmicos, se muestran en las figuras 318, 319 y en las tablas 150 y 151.

![Figura 318. Análisis térmico diferencial de la etapa de calentamiento de la aleación 96%Zn-4%Al + 18%Bi.](image)

![Figura 319. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 96%Zn-4%Al + 18%Bi.](image)
Resultados y Discusión

Las curvas que se obtienen para esta aleación en el ensayo térmico son similares a las que se han obtenido para aleación con la adición del 12%, ya no se obtiene para la muestra tipo A un pico tan intenso como en las aleaciones con un 16%Bi y un 14%Bi y esto se ve reflejado en la temperatura obtenida para la transformación eutéctica ternaria que ha bajado desde los 255ºC hasta los 253ºC. Observando las probetas donde están embutidas las muestras con las adiciones del 14%, 16% y 18%, y cuyo esquema se muestra en la figura 320, la cantidad de microestructura eutéctica que se ha desarrollado en la muestra del 18%Bi es menor que la desarrollada en las otras dos, por tanto, se está viendo experimentalmente que cuanto mayor es la zona de la microestructura eutéctica ternaria, mayor es la temperatura de inicio del pico que se obtienen.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 318)</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
<td>279,04</td>
<td>284,34</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38</td>
<td>386,14</td>
<td>279,19</td>
<td>284,75</td>
</tr>
<tr>
<td>Muestra A</td>
<td>251,26</td>
<td>253,30</td>
<td>277,81</td>
<td>283,56</td>
</tr>
<tr>
<td>Muestra B</td>
<td>250,75</td>
<td>252,83</td>
<td>277,72</td>
<td>282,52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 319)</th>
<th>Solidificación</th>
<th>Monotéctica</th>
<th>Eutectoide</th>
<th>Eutéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>387</td>
<td>375,11</td>
<td>-</td>
<td>-</td>
<td>248,46</td>
</tr>
<tr>
<td>Base B</td>
<td>382,30</td>
<td>371,54</td>
<td>-</td>
<td>-</td>
<td>259,49</td>
</tr>
<tr>
<td>Muestra A</td>
<td>377,25</td>
<td>368,15</td>
<td>368,15</td>
<td>358,01</td>
<td>260,12</td>
</tr>
<tr>
<td>Muestra B</td>
<td>370,92</td>
<td>367,23</td>
<td>367,23</td>
<td>357,06</td>
<td>260,16</td>
</tr>
</tbody>
</table>

Las curvas que se obtienen para esta aleación en el ensayo térmico son similares a las que se han obtenido para aleación con la adición del 12%, ya no se obtiene para la muestra tipo A un pico tan intenso como en las aleaciones con un 16%Bi y un 14%Bi y esto se ve reflejado en la temperatura obtenida para la transformación eutéctica ternaria que ha bajado desde los 255ºC hasta los 253ºC. Observando las probetas donde están embutidas las muestras con las adiciones del 14%, 16% y 18%, y cuyo esquema se muestra en la figura 320, la cantidad de microestructura eutéctica que se ha desarrollado en la muestra del 18%Bi es menor que la desarrollada en las otras dos, por tanto, se está viendo experimentalmente que cuanto mayor es la zona de la microestructura eutéctica ternaria, mayor es la temperatura de inicio del pico que se obtienen.

Figura 320. Esquema de las muestras 96%Zn-4%Al+14%Bi, 96%Zn-4%Al+16%Bi y 96%Zn-4%Al+18%Bi embutidas en resina.
5.15.10 96%Zn–4%Al + 20%Bi, caracterización microestructural.

La figura 321 muestra la imagen obtenida mediante microscopía óptica de la aleación ternaria con un contenido en bismuto del 20%.

Figura 321. a) Microestructura obtenida mediante microscopía óptica a 50 aumentos de la aleación 96%Zn–4%Al + 14%Bi enfriada en el interior del horno, b) detalle de la microestructura eutéctica ternaria de la imagen a).

Al igual que se ha observado para la aleación base con las adiciones del 14%, 16% y 18% de bismuto, con la adición del 20% también se desarrolla la microestructura ternaria eutéctica en la parte inferior del lingote de solidificación.

Las curvas obtenidas en el ensayo térmico, se muestran en las figuras 322 y 323.

Figura 322. Análisis térmico diferencial de la etapa de calentamiento de la aleación 96%Zn–4%Al + 20%Bi.

Figura 323. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 96%Zn–4%Al + 20%Bi.

Y en las tablas 152 y 153, se resumen las temperaturas de los picos detectados en el mismo.
Resultados y Discusión

Tabla 152 y 153. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 20%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 322)</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 323)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base A</td>
<td>380,43 384,45 279,06 284,07 - -</td>
<td>387 375,11 - - 259,14 375,11 364,53</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38 386,14 279,16 284,75 - -</td>
<td>382,30 371,54 - - 259,49 371,54 358,76</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,17 254,64 277,93 283,12 378,68 384,44</td>
<td>373,34 363,99 357,17 261,40 252,35 219,08 217,54</td>
</tr>
<tr>
<td>Muestra B</td>
<td>250,76 253,09 277,77 282,51 378,34 383,09</td>
<td>374,72 368,27 356,55 260,37 249,78 207,95 206,51</td>
</tr>
</tbody>
</table>

Los resultados del ensayo térmico para la aleación con una adición del 20%Bi, revelan para la reacción eutéctica una temperatura de 254,64ºC, superior a la obtenida para la aleación con 18%Bi de 253,30ºC. Esto es debido a que en la muestra tipo A se ha desarrollado más cantidad de microestructura eutéctica ternaria que en la aleación del 18%Bi. También hay que destacar que en la etapa de enfriamiento ha disminuido la temperatura de solidificación hasta los 373,34ºC, la más baja obtenida hasta el momento.

5.15.11 96%Zn-4%Al + 30%Bi, caracterización microestructural.

La siguiente de las adiciones de bismuto realizadas a la aleación binaria 96%Zn-4%Al es al correspondiente al 30%. De la muestra que se ha enfriado al aire, una vez que ha solidificado, no se han podido obtener imágenes claras de su microestructura y tampoco se incluyen en la figura 324. Solo se muestran imágenes de la muestra enfriada en el interior del horno, cuya microestructura resultante si es clara y distinguible.
Resultados y Discusión

Las imágenes a) y b) de la figura 324 muestran microestructuras similares a las de las aleaciones anteriores. Por una parte se desarrollan las dendritas de fase Zn(hcp-\(\beta\)) rodeadas de las regiones ricas en la fase Bi(romb) y por otro lado, las zonas donde se ubican las laminillas alternas de las fases Al(fcc-\(\alpha\)) y Zn(hcp-\(\beta\)) formadas tras la reacciones monotéctica y posterior eutectoide.

A simple vista, en la muestra 96%Zn-4%Al + 30%Bi se ve en la base del lingote de solidificación una pequeña banda correspondiente el eutéctico ternario, de la misma forma que se mostró en la figura 320, cuyo tamaño es superior a la banda observada en la aleación anterior 96%Zn-4%Al + 20%Bi. Si se mantiene la tendencia observada hasta ahora, la temperatura de la reacción eutéctica que se obtenga en el ensayo térmico para la muestra tipo A tiene que ser mayor 254,64°C. En las figuras 325 y 326 se reflejan los resultados de dicho ensayo.

Figura 324. a) y b) Microestructura obtenida mediante microscopía óptica a 200 aumentos de la aleación 96%Zn-4%Al + 30%Bi enfriada en el interior del horno.

![Figura 324](image)

<table>
<thead>
<tr>
<th>Figura 325</th>
<th>Análisis térmico diferencial de la etapa de calentamiento de la aleación 96%Zn-4%Al + 30%Bi.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Figura 326</th>
<th>Análisis térmico diferencial de la etapa de enfriamiento de la aleación 96%Zn-4%Al + 30%Bi.</th>
</tr>
</thead>
</table>
Y en las tablas 154 y 155 se recogen las temperaturas correspondientes.

Tablas 154 y 155. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 30%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 325)</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 326)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
</tr>
<tr>
<td>Base B</td>
<td>378,39</td>
<td>386,14</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,82</td>
<td>256,21</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,55</td>
<td>253,64</td>
</tr>
<tr>
<td>Base A</td>
<td>387</td>
<td>375,11</td>
</tr>
<tr>
<td>Base B</td>
<td>382,30</td>
<td>371,54</td>
</tr>
<tr>
<td>Muestra A</td>
<td>372,56</td>
<td>367,14</td>
</tr>
<tr>
<td>Muestra B</td>
<td>374</td>
<td>367,44</td>
</tr>
</tbody>
</table>

Como se ha comentado anteriormente, la temperatura obtenida para la reacción eutéctica es más alta que la obtenida en otras aleaciones donde no se ha podido observar al óptico dicha microestructura, en concreto la temperatura de 256,21ºC es la mayor que se ha obtenido hasta ahora. Este aumento contrasta con el hecho de que la temperatura de solidificación de 372,56ºC es la más pequeña que se ha obtenido. Las temperaturas para las transformaciones monotéctica y eutectoide son similares a las de otras aleaciones, no se ven afectadas por las sucesivas adiciones de bismuto.

5.15.12 96%Zn-4%Al + 40%Bi, caracterización microestructural.

Las imágenes de la figura 327 muestran la microestructura de la aleación 96%Zn-4%Al con la adición de un 40% de bismuto. Solo aparecen las imágenes de la muestra tipo A ya que en la tipo B tampoco se ha podido distinguir la microestructura.
La microestructura obtenida para la aleación 96%Zn-4%Al + 40%Bi es prácticamente igual a las de las aleaciones anteriores, la única diferencia apreciable es la cantidad de microestructura eutéctica ternaria desarrollada, que para esta aleación es similar a la que se forma en la aleación 96%Zn-4%Al + 18%Bi.

En las figuras 328 y 329 se muestran las curvas térmicas correspondientes y en las tablas 156 y 157 las temperaturas extraídas de cada uno de los picos aparecidos en dichas curvas.

La única diferencia que se venía observando en la forma de los picos obtenidos en el ensayo térmico era la intensidad del pico correspondiente a la aleación ternaria tipo A de la etapa de calentamiento. Para esta aleación la forma del pico no es tan acusada como en las aleaciones con adiciones del 14%, 16% y 30% así que la temperatura obtenida debe ser inferior a los 255°C aproximadamente.
Resultados y Discusión

Tabla 156 y 157. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 40%Bi.

<table>
<thead>
<tr>
<th>96%Zn-4%Al + 40% de Bismuto</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 328)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>Eutéctica</td>
<td>Eutectoide</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Pico Máximo (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38</td>
<td>385,87</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,28</td>
<td>254,91</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,29</td>
<td>253,37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>96%Zn-4%Al + 40% de Bismuto</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 329)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>Solidificación</td>
<td>Monotéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
<td>Fin (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>387</td>
<td>375,11</td>
</tr>
<tr>
<td>Base B</td>
<td>382,30</td>
<td>371,54</td>
</tr>
<tr>
<td>Muestra A</td>
<td>373,62</td>
<td>367,86</td>
</tr>
<tr>
<td>Muestra B</td>
<td>373,26</td>
<td>366,26</td>
</tr>
</tbody>
</table>

Los resultados del ensayo térmico no muestran diferencias apreciables con respecto a las aleaciones anteriores, lo único a destacar es el valor de temperatura de la transformación eutéctica de la etapa de calentamiento que desciende con respecto a la aleación con la adición del 30% a un valor de 254,91ºC, por el hecho comentado anteriormente.

5.15.13 **96%Zn-4%Al + 50%Bi, caracterización microestructural.**

La penúltima de las adiciones de bismuto realizada a la aleación binaria 96%Zn-4%Al es la del 50%. Las imágenes obtenidas mediante microscopía óptica para la muestra tipo A se reflejan en la figura 330.

Figura 330. a) y b) Microestructura obtenida mediante microscopía óptica a 200 aumentos de la aleación 96%Zn-4%Al + 50%Bi enfriada en el interior del horno.
Observando las microestructuras de las imágenes de la figura 330, no se han producido cambios significativos que haya destacar si se comparan con las microestructuras obtenidas en aleaciones anteriores. En las figuras 331 y 332 están los resultados del ensayo térmico junto con el análisis de cada uno de los picos aparecidos en todas las curvas. Los datos que se extraen de dicho análisis se recopilan en las tablas 158 y 159.

Tabla 158. Resumen de los datos de temperatura obtenidos en la etapa de calentamiento del ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 50%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 331)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutéctica</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
</tr>
<tr>
<td>Base B</td>
<td>378,40</td>
</tr>
<tr>
<td>Muestra A</td>
<td>252,24</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,16</td>
</tr>
</tbody>
</table>

Tabla 159. Resumen de los datos de temperatura obtenidos en la etapa de enfriamiento del ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 50%Bi.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 332)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solidificación</td>
</tr>
<tr>
<td></td>
<td>Inicio (ºC)</td>
</tr>
<tr>
<td>Base A</td>
<td>387</td>
</tr>
<tr>
<td>Base B</td>
<td>382,30</td>
</tr>
<tr>
<td>Muestra A</td>
<td>375,81</td>
</tr>
<tr>
<td>Muestra B</td>
<td>375,08</td>
</tr>
</tbody>
</table>
Los resultados del análisis térmico son similares a los de las aleaciones anteriores, siendo la temperatura eutéctica ternaria inferior 255°C, resultado hasta ahora coherente viendo la cantidad de microestructura eutéctica ternaria desarrollada en la muestra tipo A de la aleación 96%Zn-4%Al + 50%, que es muy similar a la desarrollada en la aleación anterior de composición 96%Zn-4%Al + 40%.

5.15.14 96%Zn-4%Al + 60%Bi, caracterización microestructural.

La última adición realizada a la aleación base 96%Zn-4%Al es la correspondiente al 60%. Las imágenes obtenidas mediante microscopía óptica, se muestran en la figura 333.

La adición de un 60% de bismuto en la aleación base 96%Zn-4%Al provoca que sea esta última muestra la que presente mayor cantidad de microestructura eutéctica del sistema ternario Zn-Al-Bi en el lingote de solidificación, el cual, está compuesto en casi su totalidad por la misma. Y la muestra que ha sido enfriada al aire presenta enormes lóbulos de microestructura ternaria eutéctica por toda la superficie como se ve en la imagen a) de la figura 333. La microestructura es la misma que la observada en las aleaciones anteriores. La única diferencia a destacar con respecto a las aleaciones anteriores con base 96%Zn-4%Al es, que incluso en la muestra que ha sido enfriada al aire se ve dicha microestructura, hecho que en el resto de aleaciones no se ha observado.

Una vez observada la microestructura al óptico se realiza el ensayo térmico de las muestras tipo A y tipo B. Es de esperar que se obtenga el mayor de temperatura para
la reacción eutéctica ternaria en esta última aleación. En las gráficas 394 y 395 y las tablas 160-161 se representan los resultados del ensayo térmico realizado. Como se ha comentado anteriormente en esta aleación es

96%Zn - 4%Al + 60%Bi

Muestra A
Base A
Muestra B
Base B

Calentamiento

Enfriamiento

96%Zn - 4%Al + 60%Bi

Muestra A
Base A
Muestra B
Base B

Figura 334. Análisis térmico diferencial de la etapa de calentamiento de la aleación 96%Zn-4%Al + 60%Bi.

Figura 335. Análisis térmico diferencial de la etapa de enfriamiento de la aleación 96%Zn-4%Al + 60%Bi.

Tablas 160 y 161. Resumen de los datos de temperatura obtenidos en el ensayo térmico, DTA, de la aleación de composición 96%Zn-4%Al + 60%Bi.

<table>
<thead>
<tr>
<th>96%Zn-4%Al + 60% de Bismuto</th>
<th>Datos de temperatura en la etapa de calentamiento (Fig. 334)</th>
<th>Eutéctica</th>
<th>Eutectoide</th>
<th>Monotéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>380,43</td>
<td>384,45</td>
<td>279,08</td>
<td>284,34</td>
</tr>
<tr>
<td>Base B</td>
<td>378,38</td>
<td>385,87</td>
<td>279,19</td>
<td>284,50</td>
</tr>
<tr>
<td>Muestra A</td>
<td>253,08</td>
<td>259,69</td>
<td>278,75</td>
<td>285,19</td>
</tr>
<tr>
<td>Muestra B</td>
<td>251,49</td>
<td>254,17</td>
<td>277,99</td>
<td>283,26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>96%Zn-4%Al + 60% de Bismuto</th>
<th>Datos de temperatura en la etapa de enfriamiento (Fig. 335)</th>
<th>Solidificación</th>
<th>Monotéctica</th>
<th>Eutectoide</th>
<th>Eutéctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>Inicio (°C)</td>
<td>Fin (°C)</td>
<td>Inicio (°C)</td>
<td>Pico Máximo (°C)</td>
<td>Inicio (°C)</td>
</tr>
<tr>
<td>Base A</td>
<td>387</td>
<td>375,11</td>
<td>-</td>
<td>-</td>
<td>248,46</td>
</tr>
<tr>
<td>Base B</td>
<td>382,30</td>
<td>371,54</td>
<td>-</td>
<td>-</td>
<td>259,49</td>
</tr>
<tr>
<td>Muestra A</td>
<td>370,39</td>
<td>365,38</td>
<td>365,38</td>
<td>355,82</td>
<td>-</td>
</tr>
<tr>
<td>Muestra B</td>
<td>369,31</td>
<td>361,64</td>
<td>361,64</td>
<td>340,08</td>
<td>256,37</td>
</tr>
</tbody>
</table>
Como era de esperar, para la muestra tipo A se obtiene un pico muy intenso para la reacción eutéctica ternaria y la temperatura asociada al mismo, 259,9ºC es la mayor temperatura obtenida para esta reacciónen todas las aleaciones que han sido estudiadas.

Esta mayor temperatura contrasta con el hecho de que para esta aleación, la temperatura de la transformación monotéctica ternaria es la más pequeña obtenida hasta el momento, 375,83ºC, esto es debido a que la reacción eutéctica ternaria se está produciendo preferencialmente frente a las otras dos reacciones, sobre todo la monotéctica.

Finaliza la caracterización de todas las aleaciones base 96%Zn-4%Al, a modo de resumen y teniendo en cuenta el diagrama de fases del sistema ternario Zn-Al-Bi a temperatura ambiente, en la figura 336 se muestran las microestructuras de la a aleación 96%Zn-4%Al con las mayores adiciones de bismuto,

Figura 336. Microestructuras obtenidas mediante microscopía óptica a 200 aumentos para las aleaciones a) 96%Zn-4%Al + 10%; b) 96%Zn-4%Al + 20%; c) 96%Zn-4%Al + 30%; d) 96%Zn-4%Al + 40%; e) 96%Zn-4%Al + 50% y f) 96%Zn-4%Al + 60%.

La microestructura de la aleación base 96%Zn-4%Al se compone de dendritas de fase Zn(hcp-β) que solidifican en primer lugar, y de un agregado monotéctico compuesto por laminillas alternas de las fases Al(fcc-α’) y Zn(hcp-β), a partir del cual, la
fase $\text{Al}(fcc-a')$ se transforma mediante una reacción eutectoide, en las fases $\text{Al}(fcc-a')$ y $\text{Zn}(hcp-\beta)$. La adición de bismuto a la aleación binaria 96%Zn-4%Al para dar lugar a la aleación ternaria provoca cambios en la microestructura, que se manifiestan en forma de regiones ricas en la fase $\text{Bi}(\text{romb})$ situadas en los bordes interdendríticos y en los límites de grano. En estas regiones es donde tiene lugar la transformación eutéctica ternaria, y su microestructura característica formada por espigas ricas en la fase $\text{Zn}(hcp-\beta)$ embebidas en una matriz rica en $\text{Bi}(\text{romb})$ no se observa de forma clara la microscopio hasta adiciones superiores al 12%Bi, como se observa en la figura 336.

En relación a la cantidad de microestructura eutéctica ternaria desarrollada en las aleaciones en la que ésta ha sido visible al microscopio óptico, no se ha visto una evolución creciente de la misma conforme el aumento de bismuto ha sido mayor ya que, en todas las aleaciones la cantidad de microestructura eutéctica formada ha sido muy similar, excepto para la aleación 96%Zn-4%Al + 60%Bi, en la que dicha microestructura ha ocupado la mitad del lingote de solidificación.

Una vez que se han analizado las microestructuras de forma global para la aleación base 96%Zn-4%Al y las adiciones de bismuto, en las figuras 337-339, se analizan en conjunto todas las curvas térmicas diferenciales de temperatura de la etapa de calentamiento correspondientes a las muestras tipo A, con el objetivo de comparar unas con otras y analizar la influencia que tiene las sucesivas adiciones de bismuto en las transformaciones invariantes que tienen lugar en la aleación ternaria resultante.

En la figura 337 se representan las curvas DTA para la aleación 96%Zn-4%Al + las adiciones del 2%, 4%, 6%, 8% y 10% Bi.

![Figura 337. Curvas DTA de la etapa de calentamiento para la aleación 96%Zn-4%Al base + adiciones de 2%, 4%, 6%, 8% y 10% Bi.](image)
El primer pico que se observa en las curvas coloreadas de la figura 337 corresponde con la reacción eutéctica ternaria, se obtiene en torno a los 251°C-252°C, y es el pico de menor intensidad. El segundo pico se obtiene en torno a los 277°C-278°C y corresponde con la reacción eutectoide y el último pico, de mayor intensidad entorno a los 376°C-378°C a la reacción monotéctica.

En las figuras 338 y 339 se muestran las curvas DTA para la aleación base aleación 96%Zn-4%Al con las adiciones comprendidas entre el 12%Bi-60%Bi.

Las curvas DTA representadas en la figura 337 no muestran diferencias apreciables en cuanto a la posición de los picos y sus tamaños relativos. En cambio, en las figuras 338 y 339 si que se observan diferencias significativas, sobre todo en el pico correspondiente a la reacción eutéctica ternaria. En las aleaciones con adiciones del 14%, 30% y 60% de bismuto, el tamaño de este pico, (círculo naranja discontinuo), es mayor que el obtenido para las otras aleaciones En cuanto a los picos de las otras dos transformaciones no se observan grandes diferencias, excepto para la aleación 96%Zn-4%Al + 60%Bi, en la que se obtiene el menor pico para la reacción monotéctica, (círculo verde discontinuo). Este hecho ya ha sido comentado anteriormente en el apartado correspondiente a esta aleación.

En la tabla, 162 se resumen todas las temperaturas de las tres reacciones invariantes, cuyos picos están reflejados en las curvas de las figuras que se acaban de comentar. También se va a incluir una columna en la tabla 162 mostrando la
temperatura que predice la simulación termodinámica para el comienzo de la solidificación de las diferentes aleaciones. Y de cara a la discusión de resultados de las temperaturas obtenidas en los ensayos térmicos, En la tabla 163 se reflejan estas temperaturas correspondientes a las que predice la simulación termodinámica con Thermo-Calc [188] y las que se extraen de la bibliografía [30, 31].

Tabla 162. Resumen de las temperaturas obtenidas en el del programa controlado de temperatura para la muestra 96%Zn-4%Al + Adiciones de Bismuto.

<table>
<thead>
<tr>
<th>96%Zn-4%Al + Adiciones de Bismuto</th>
<th>Datos de temperatura en la etapa de Calentamiento (ºC)(fig. 337-339)</th>
<th>Datos de temperatura en la etapa de Enfriamiento (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>Eutéctico Ternario</td>
<td>Eutectoide Ternario</td>
</tr>
<tr>
<td>Base</td>
<td>*380,43</td>
<td>279,16**</td>
</tr>
<tr>
<td>+2%Bi</td>
<td>251,64</td>
<td>278,53</td>
</tr>
<tr>
<td>+4%Bi</td>
<td>251,76</td>
<td>278,30</td>
</tr>
<tr>
<td>+6%Bi</td>
<td>252,32</td>
<td>278,15</td>
</tr>
<tr>
<td>+8%Bi</td>
<td>252,16</td>
<td>277,83</td>
</tr>
<tr>
<td>+10%Bi</td>
<td>253,19</td>
<td>278,62</td>
</tr>
<tr>
<td>+12%Bi</td>
<td>253,13</td>
<td>278,83</td>
</tr>
<tr>
<td>+14%Bi</td>
<td>255,39</td>
<td>278,22</td>
</tr>
<tr>
<td>+16%Bi</td>
<td>255,04</td>
<td>278,37</td>
</tr>
<tr>
<td>+18%Bi</td>
<td>253,30</td>
<td>277,81</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>254,64</td>
<td>277,93</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>256,2</td>
<td>278,28</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>254,91</td>
<td>278,30</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>254,91</td>
<td>278,01</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>259,69</td>
<td>278,75</td>
</tr>
</tbody>
</table>

*Temperatura eutéctica binaria; ** Temperatura eutectoide binaria.

Tabla 163. Resumen de las temperaturas de las reacciones invariantes del sistema ternario Zn-Al-Bi.

<table>
<thead>
<tr>
<th>Tipo Transformación</th>
<th>Temperatura (ºC)[129]</th>
<th>Temperatura (ºC)[1,127]</th>
<th>Transformación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eutéctica</td>
<td>256,42</td>
<td>253,9</td>
<td>L’” ↔ Bi(romb)+Al(fcc-α)+Zn(hcp-β)</td>
</tr>
<tr>
<td>Eutectoide</td>
<td>277,63</td>
<td>278,1</td>
<td>Al(fcc-α’)↔Al(fcc-α)+Zn(hcp-β)</td>
</tr>
<tr>
<td>Monotéctica</td>
<td>370,97</td>
<td>376</td>
<td>L’ ↔ L” + Al(fcc-α’)+ Zn(hcp-β)</td>
</tr>
</tbody>
</table>
Resultados y Discusión

Analizando los datos de temperatura para la aleación base binaria 94%Zn-6%Al de la tabla 162, se extraen las siguientes conclusiones.

- La simulación termodinámica [188] y las fuentes bibliográficas [30, 31, 161] predicen la transformación eutectoide binaria a una temperatura de 277,2°C y la eutéctica a 381°C, y experimentalmente se obtienen valores de 279,16°C y 380,43°C respectivamente. El hecho de que se haya obtenido una temperatura superior para la eutectoide es debido a la forma de los picos obtenidos, poco definidos y anchos que provoca que al integrarlos se pierda precisión en el análisis. En las aleaciones 85% Zn-15% y 40% Zn-60% Al, la temperatura obtenida para esta transformación se ajusta perfectamente a los 277,2°C.

- Para el análisis del comienzo de la solidificación se han tomado de la etapa de enfriamiento las temperaturas obtenidas en el hombro solapado al pico de la transformación eutéctica. Esta temperatura es de 387°C y comparándola con la obtenida mediante simulación termodinámica de 404,89°C, existe un desfase de casi 20°C. Tomando el diagrama binario Zn-Al de la bibliografía [85] y extrapolando la temperatura de corte con la línea de líquidos se obtiene una temperatura de 410°C. Ambas temperaturas son 17°C y 23°C mayores a los experimentales, por tanto ni la simulación termodinámica ni los datos bibliográficos se ajustan a los obtenidos experimentalmente para la solidificación.

Si se analiza ahora las temperaturas de la tabla 162 correspondientes a las aleaciones con adición de bismuto, hay que destacar los puntos siguientes.

- Las temperaturas obtenidas experimentalmente para la transformación eutectoide oscilan entre 277,81°C-278,83°C, una horquilla de sólo 1°C y además se encuentran entre las temperaturas que predice la simulación termodinámica 277,63°C [188] y la de bibliografía 278,1°C [30, 31].

- Si se observan las temperaturas de la reacción monotéctica, hasta la adición de un 12% de bismuto, el valor experimental obtenido se ajusta perfectamente a los 376°C de la bibliografía [30, 31].
Para adiciones superiores al 12% de bismuto, este valor aumenta y oscila entre los 376,01°C-379,47°C. Este hecho coincide con lo observado al microscopio óptico donde para la aleación ternaria 96%Zn-4%Al+14%Bi y posteriores, se desarrolla la microestructura eutéctica ternaria y se hace visible al óptico, esto provoca que se esta reacción se está produciendo preferencialmente frente a las otras dos reacciones y provoca alteraciones en las temperaturas de dichas reacciones.

Hay que destacar también en este punto la temperatura obtenida para la muestra con la adición del 60%Bi, cuyo valor de 375,83°C es el más bajo de todos los obtenidos para la reacción monotéctica. Este hecho es debido al mayor desarrollo de microestructura eutéctica ternaria que se ha observado para esta aleación en particular y que provoca alteraciones en las temperaturas de las transformaciones monotéctica y de la propia eutéctica.

El valor que predice la simulación termodinámica de 370,97°C, se encuentra muy alejado del de la bibliografía y los obtenidos experimentalmente por tanto, no se va tener en cuenta este dato.

- Por último, si se analizan las temperaturas de la transformación eutéctica ternaria, se ven oscilaciones de las temperaturas de 251,64°C-259,69°C. Para adiciones bajas de bismuto, se obtienen los menores valores de temperatura y también los más alejados a los de bibliografía 253,9°C [30, 31] y de la que predice la simulación termodinámica, 256,42°C [188].

Conforme aumenta la cantidad de bismuto añadido, la temperatura de la reacción eutéctica ternaria aumenta y se ajusta mejora a las de referencia comentadas anteriormente. Este hecho coincide con lo observado mediante microscopía óptica, donde a partir de un 14% de adición de bismuto, se comienza a observar la microestructura característica del eutéctico ternario y cuanto mayor ha sido la microestructura eutéctica que se ha desarrollado en la muestra, mayor es la temperatura que se ha obtenido para dicha transformación, hasta el punto de que para la última adición del 60%, se obtiene la mayor temperatura eutéctica, debido a que
es en ella donde se formado mayor cantidad de microestructura eutéctica ternaria.

Otro hecho a destacar con respecto a las temperaturas de la reacción eutéctica ternaria, es que aunque a partir de la aleación con adición del 14%Bi y sucesivas, que es donde se ha desarrollado visiblemente la microestructura característica de espigas ricas en zinc embebidas en la matriz rica en bismuto, no se hayan producido variaciones significativas en la cantidad de microestructura eutéctica ternaria formada, sí que en los análisis térmicos se ha comprobado que esas pequeñas diferencias provocan cambio significativos en las temperaturas eutécticas, produciéndose variaciones comprendidas entre 253,30ºC-255,04ºC.

Una vez analizados los resultados de las curvas térmicas tipo DTA, se pasa al análisis de las curvas calorimétricas tipo DSC para las aleaciones base 96%Zn-4%Al y las que aleaciones con las diferentes adiciones de bismuto. En las figuras 340-344 se representan las curvas correspondientes al calor absorbido por la muestra en función de la temperatura. Al igual que en las curvas tipo DTA, los cambios de fase y las reacciones invariantes se manifiestan en las curvas calorimétrica en forma de picos endotérmicos, si la etapa es de calentamiento y en forma de picos exotérmicos, si la etapa es endotérmica.

![Figura 340. Curvas DSC de calentamiento para la aleación Base 96%Zn-4%Al.](image-url)
Los picos obtenidos en las curvas DSC son más pequeños y menos intensos que los obtenidos en las curvas DTA, ya que el primer pico correspondiente a la reacción eutectoide binaria, a penas se detecta. Aun así, la intensidad obtenida ha permitido realizar el análisis térmico correspondiente, integrando los picos y obteniendo el valor del calor absorbido por la muestra en la reacción eutectoide y en la eutéctica, reflejado en el segundo pico de mayor intensidad de la figura 340.

En las figuras 341-344, se muestran las curvas DSC para las aleaciones con adición de bismuto.

Figura 341. Curvas DSC de calentamiento para la aleación 96%Zn-4%Al + Adiciones de 2%, 4%, 6% y 8% Bi.

Figura 342. Curvas DSC de calentamiento para la aleación 96%Zn-4%Al + Adiciones de 10%, 12%, 14% y 16% Bi.

Figura 343. Curvas DSC de calentamiento para la aleación 96%Zn-4%Al + Adiciones de 18%, 20%, 30% y 40% Bi.

Figura 344. Curvas DSC de la etapa de calentamiento para la aleación 96%Zn-4%Al + adiciones de 50% y 60% Bi.
En las curvas DSC de las figuras 341-344, se obtienen tres picos, el primero de ellos aparece en torno a los 251°C-252°C y corresponde con la transformación eutéctica ternaria, el siguiente pico surge a 277°C-278°C y se debe a la reacción eutectoide y el último y de mayor intensidad sale a 377°C y pertenece a la transformación monotéctica ternaria. Viendo los picos en conjunto, el mayor calor absorbido por las aleaciones es para la transformación monotéctica ternaria.

En la tabla 164, se resumen todos los valores de calor absorbidos por las muestra tipo A en la etapa de calentamiento.

Tabla 164. Resumen de los datos del calor absorbido puestos en juego en la etapa de calentamiento del ensayo calorimétrico para las muestras 96%Zn-4%Al + Adiciones de Bismuto.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Datos de calor absorbido en la etapa de calentamiento (Fig. 340-344)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eutécico Ternario</td>
</tr>
<tr>
<td></td>
<td>Flujo de Calor (J/g)</td>
</tr>
<tr>
<td>Base A</td>
<td>73,03*</td>
</tr>
<tr>
<td>Base B</td>
<td>73,41*</td>
</tr>
<tr>
<td>+2%Bi</td>
<td>0,6898</td>
</tr>
<tr>
<td>+4%Bi</td>
<td>0,4427</td>
</tr>
<tr>
<td>+6%Bi</td>
<td>0,5982</td>
</tr>
<tr>
<td>+8%Bi</td>
<td>0,4064</td>
</tr>
<tr>
<td>+10%Bi</td>
<td>-</td>
</tr>
<tr>
<td>+12%Bi</td>
<td>-</td>
</tr>
<tr>
<td>+14%Bi</td>
<td>8,572</td>
</tr>
<tr>
<td>+16%Bi</td>
<td>4,517</td>
</tr>
<tr>
<td>+18%Bi</td>
<td>1,053</td>
</tr>
<tr>
<td>+20%Bi</td>
<td>4,561</td>
</tr>
<tr>
<td>+30%Bi</td>
<td>11,31</td>
</tr>
<tr>
<td>+40%Bi</td>
<td>4,577</td>
</tr>
<tr>
<td>+50%Bi</td>
<td>3,772</td>
</tr>
<tr>
<td>+60%Bi</td>
<td>28,71</td>
</tr>
</tbody>
</table>

*C calor absorbido eutéctica binaria; ** calor absorbido eutectoide binaria.

Observando los resultados de los calores absorbidos en las transformaciones ternarias eutécicas, eutectoide y monotéctica de la tabla 164, se extraen las conclusiones siguientes.

- Los valores de calor absorbido para la aleaciones base binarias en la reacción eutéctica son de un orden de magnitud mayor que para las aleaciones ternarias, este hecho es lógico si se observa el tamaño de unos picos y otros.
En cuanto al calor absorbido en la transformación eutectoide binaria, se obtienen valores muy similares para las aleaciones base y para las aleaciones ternarias. Este hecho se ha comentado con anterioridad la discusión de resultados, y es debido a que la reacción eutectoide ternaria deriva casi exclusivamente de la eutectoide binaria, por esta razón, no se observan grandes diferencias.

Para los datos obtenidos en las aleaciones ternarias hay que destacar los siguientes puntos.

- Los bajos valores de calor absorbidos en la reacción eutéctica ternaria por las muestras de las aleaciones 96%Zn-4%Al + adiciones del 2%-8%Bi, coincide con el hecho observado en estas muestras al microscopio óptico, de no haberse desarrollado en ellas la microestructura eutéctica ternaria característica formada por espigas oscuras ricas en la fase Zn(hcp-β) embebidas en la matriz de color claro rica en la fase Bi(romb). A partir de la adición de un 14%Bi, ya se ha podido ver al microscopio óptico dicha microestructura, y esto se traduce en mayores tamaños de pico para la reacción eutéctica ternaria, que al integrarlos, lógicamente se obtienen valores de calores absorbidos más altos. En la aleación con la adición del 60% de bismuto se ha obtenido el mayor valor de calor absorbido por la muestra, este resultado coincide con que para esta muestra se ha observado al óptico la mayor cantidad de microestructura eutéctica ternaria. Se puede concluir entonces que, experimentalmente se ha observado que el contenido de bismuto añadido influye directamente en la temperatura de la transformación eutéctica ternaria. Y cuanto mayor es la cantidad añadida, mas alta es esta temperatura.

- En relación a los datos de calor absorbidos por las muestras de las diferentes aleaciones en la transformación eutectoide, son todos del mismo orden de magnitud y varían entre 2,4J/g°C-5,4J/g°C; en esta horquilla están comprendidos los datos de las aleaciones binarias. El único dato anormal es el obtenido para la aleación 96%Zn-4%Al + 60%Bi de 0,907J/g°C, hecho que coincide con la obtención del mayor valor de calor absorbido en la reacción eutéctica ternaria y el menor para la reacción
monotéctica, es decir que el mayor desarrollo de la reacción eutéctica ternaria implica que las otras dos reacciones se produzcan minoritariamente.

- La última columna que se refleja en la tabla 164 corresponde a la reacción monotéctica ternaria y los calores absorbidos, son los más altos de las tres reacciones que tiene lugar. Esto es debido a que en esta reacción tiene lugar un cambio de estado de fase sólida a líquida, la cual requiere más energía que en la transformación de fase a solida a solida que implica, de la reacción eutectoide, que implica únicamente una redistribución de los átomos.
CONCLUSIONES
6. CONCLUSIONES

De forma general para las cinco composiciones estudiadas, se extraen las siguientes conclusiones comunes.

Se han estudiado de forma detallada las aleaciones base de partida de composiciones 20%Zn-80%Al, 40%Zn-60%Al, 85%Zn-15%Al, 94%Zn-6%Al y 96%Zn-4%Al y posteriormente, con las diferentes adiciones de bismuto realizadas, 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 30%, 40%, 50% y 60%, destacando los siguientes puntos.

1. La aleación ternaria Zn-Al-Bi, una vez fundida, se descompone en dos líquidos, llamados \(L' \) y \(L'' \), como se ha explicado a lo largo de la discusión de resultados. Estos dos líquidos siguen caminos diferentes durante la solidificación de la aleación. El líquido \(L' \) da lugar a las transformaciones monotéctica y eutectoide ternarias y el líquido \(L'' \) da lugar a la transformación eutéctica ternaria.

2. La escasa solubilidad del tercer elemento de aleación añadido, es decir el bismuto, tanto en el aluminio como en el zinc, provoca que se sitúe preferencialmente en los límites de grano y bordes de dendritas, siendo estas zonas las últimas en solidificar y en las que se produce la última transformación, es decir la eutéctica ternaria. Este hecho coincide con los estudios realizados por Nestler [173, 174] que confirmaban la solidificación del bismuto sobre la matriz de aluminio en forma glóbulos.

3. La estructura característica del eutéctico ternario, formada por “espigas” ricas en la fase \(\text{Zn(hcp-}\beta) \) sobre la matriz rica en las fase del bismuto \(\text{Bi(romb)} \), no se ha observado de forma homogénea a lo largo de todas las aleaciones, así, en la de composición 20%Zn-80%Al + adiciones de Bi, no se observa dicha microestructura, en la de composición 40%Zn-60%Al + adiciones de Bi no se ha observado...
hasta la última adición realizada, la del 60%Bi y para las aleaciones de composición 85%Zn-15%Al + adiciones de Bi y 94%Zn-6%Al + adiciones de Bi y 96%Zn-4%Al + adiciones de Bi, se ha observado pero para altas adiciones de bismuto.

4. El aspecto microestructural de las aleaciones de composición 20%Zn-80%Al y 40%Zn-60%Al, es muy parecido entre sí, pero a la vez completamente diferentes a las otras tres aleaciones de composiciones 85%Zn-15%Al, 94%Zn-6%Al y 96%Zn-4%Al. Ya que sólo se observan enormes dendritas de la fase \(\text{Al}(fcc-\alpha) \) en forma de rosetas que ocupan prácticamente toda la microestructura y no se han apreciado al microscopio óptico las microestructuras características de las transformaciones monotéctica, eutectoide y eutéctica, que sí se han observado en las otras tres aleaciones.

5. En cuanto a las transformaciones que tienen lugar en las aleaciones estudiadas, hay que destacar el hecho que para las aleaciones de composición 20%Zn-80%Al + adiciones de Bi y para las de composición 40%Zn-60%Al + adiciones de Bi, no se han observado al microscopio óptico ni al SEM las microestructuras características obtenidas en las reacciones eutectoide y eutéctica ternarias.

6. En cuanto al tipo de enfriamiento realizado a las muestras tratadas en este trabajo, rápido en el exterior del horno de fusión y lento en el interior del mismo, se observan diferencias claras en la microestructura. Las muestras enfriadas de forma lenta presentan una microestructura más desarrollada y en muchas ocasiones, no se aprecian con claridad las diferentes fases, como ha ocurrido en las aleaciones 20%Zn-80%Al y 40%Zn-60%Al. En cambio, las microestructuras resultantes de los enfriamientos rápidos al aire están menos desarrolladas, las dendritas que se obtienen son de un tamaño menor y hay muestras en las que tampoco se distinguen con claridad la microestructura debido al gran número de dendritas que se forman [200].
7. Los datos obtenidos mediante la simulación termodinámica con el programa Thermo-Calc, no predicen con total exactitud los resultados experimentales, si nos fijamos en algunas de las transformaciones invariantes que tienen lugar. Así, las temperaturas experimentales para la transformación eutéctica, eutectoide y monotéctica están en torno a los (251-252°C); (277-278°C); (375-379°C) respectivamente y las obtenidas mediante simulación termodinámica, 256°C, 277,63°C y 370,98°C. La temperatura experimental que mejor predice Thermo-Calc es la correspondiente a la transformación eutectoide, en las otras dos hay una diferencia de unos 5°C. Estas discrepancias en la temperatura también son visibles si las comparamos con las del trabajo que se ha tomado como base, Gröbner [30, 31]. Este hecho es debido a las condiciones de no equilibrio ocurridas durante el desarrollo de los ensayos de fusión y solidificación.

8. Las técnicas utilizadas de análisis térmico, con procesos de calentamiento y enfriamiento, han servido para identificar los cambios producidos en las diferentes aleaciones, poniendo de manifiesto las transformaciones invariantes ocurridas y los calores absorbidos y cedidos por las mismas en esas transformaciones. La única limitación que se ha encontrado a lo largo de toda la experimentación en esta técnica ha estado en los datos obtenidos en las etapas de enfriamiento, que no han permitido reproducir los datos teóricos.

El tipo de enfriamiento realizado a las muestras, lento en el interior del horno y rápido al aire, no ha influido de forma significativa en los resultados térmicos obtenidos en los ensayos térmicos diferenciales, ya que los valores de temperaturas obtenidos para las transformaciones eutéctica, eutectoide, monotéctica ternarias y las correspondientes a los procesos de fusión y solidificación, son similares para ambos tipos de muestras, tanto para las que han sido enfriadas de forma lenta en el interior del horno, como para las que han sido enfriadas de forma rápida al aire.
ANEXO
7. ANEXO

7.1 Introduction

Zinc-aluminum alloys (ZA) were developed in the sixties by zinc producing companies as alternatives to foundries, malleable iron and bronze, in a time when copper was scarce supply.

The addition of the zinc aluminum alloy gives, among other properties, low weight and anticorrosive power also substantially increases the hardness and strength of the alloy as well as its fluidity, allowing to obtain castings of complex shapes.

Creating new zinc-based alloys, especially in developed countries, are of particular interest due to the variety of uses for these alloys can be given, taking into account the need of the industry to obtain from them a variety of properties required for the manufacture of structural parts. Consumption of these alloys by the industry has grown from the discovery of new properties of them, which has led them to be highly competitive, in addition to going for the low manufacturing cost compared to other materials. Zinc base alloys besides excellent mechanical properties, have a great aptitude for moulding, possessing high castability and low melting point, making them very applicable in the manufacturing of metallic elements of different uses.

The zinc-aluminium alloys are versatile and can be manufactured by different casting techniques can also be prepared by conventional techniques forged and extruded laminate. The manufacturing cost is competitive and these alloys are used to manufacture components present in the transmission and suspension of the vehicle.

The family of zinc-aluminium alloy material provides an excellent combination of properties, the best resistance to wear and temperature and fatigue than other conventional zinc alloys. Among its most important applications is the automotive field for plate making and automotive tribology components. Among its latest applications, manufacturing is lead-free ammunition, given the toxicity of the same. The addition of a third element such as copper, magnesium, silicon or nickel, are an improvement on the properties of zinc-aluminium alloys. The zinc-aluminum binary alloy to be studied variations it causes this addition on the microstructure and the invariant transformations that occur in the binary alloy and that are directly related to the potential applications.
that may have these alloys. The ternary system composed of the elements zinc, aluminum and bismuth is poorly studied, there is little literature data, so that the results obtained in this work will be used to complete this ternary system.

7.2 Objectives

Therefore the objective of this study is the characterization of the ternary alloy composed of the elements zinc, aluminium and bismuth using thermal analysis, DTA, optical microscopy and scanning electron microscopy, SEM, in order to meet the influence of the addition of bismuth in the invariant transformations, compositions and temperatures occurring in said ternary alloy and the changes that may occur in the microstructure of said alloy and which are directly related to the mechanical properties of the materials make them appropriate for some other applications in industry.

Also used colorimetric analysis techniques, DSC, to study the flow of heat associated with changes in the different alloys made experimentally as a result of the changes produced in them, in order to evaluate the effect of the addition of bismuth in the heat absorbed or given by the different alloys, since knowledge of this heat brought into play during the melting and solidification processes are essential data used in the foundry industry for modeling these processes and mold design.

For this study, five compositions were chosen from zinc and aluminum binary alloy, namely an alloy of eutectic composition (94% Zn-6% Al), another hypoeutectic alloy composition (85% Zn-15% Al), another hypereutectic alloy composition (96% Zn-4% Al), and alloys of two compositions (20% Zn-80% Al) and (40% Zn-60% Al), and these alloys have bismuth added amounts ranging between 2% and 60%.

The thermodynamic simulation using the Thermo-Calc program, know theoretically allow the ternary system Bi-Al-Zn, particularly the evolution of the composition of the various phases present with temperature changes and temperature invariant.

7.3 Results

Depending on five alloys studied, the results obtained can be summarized in the following points.
- 20%Zn-80%Al. The study carried out by optical microscopy microstructure shows a large area occupied by the phase [Al (fcc-α)] and surrounding phases [Al(fcc-α) + Zn(hcp-β)]. The only thermal study records a peak around 570°C, which corresponds with the melting of the alloy. The microstructure no major changes are observed, since the ternary eutectic microstructure characteristic has not been observed for this game alloys. Bismuth added is distributed homogeneously throughout the alloy in the form of white lobes. The addition of different amounts of bismuth to the base alloy 20% Zn-80% Al, not practically make vary the melting temperature of the base alloy, since the maximum difference obtained is 2-3 degrees. The addition of bismuth causes the appearance of a new peak at 251°C, which corresponds with the ternary eutectic transformation. Associated with peak temperatures of the melting process are kept substantially equal for all alloys, i.e., the addition of bismuth produces no significant variations in the melting point of the base alloy from which they derive. As to the heat absorbed by the alloy in the melting process and the ternary eutectic transformation, in general, the higher the bismuth added to the base alloy, the lower the heat absorbed by the alloy to carry out these two transformations.

- 40%Zn-60%Al. The microstructural study shows primary dendrites solidification phase Al(fcc-α) surrounded aggregate [Al(fcc-α) + Zn(hcp-β)]. Unlike the previous alloy, this with addition of 40% bismuth and the optical microscope shows the ternary eutectic microstructure formed by zinc rich long spikes embedded in a matrix of bismuth. In the thermal analysis shows three peaks, the first corresponding to the eutectic reaction ternary around 251°C, the second peak corresponding to the reaction eutectoid ternary at 278°C and the third corresponding to the melting of the alloy at 490°C. Regarding the influence of bismuth in the melting temperature of the alloy to base, the higher the added bismuth higher the temperature at which the alloy starts to melt. Eutectic and eutectoid reactions ternary remain virtually unchanged with additions of bismuth. With respect to the heat absorbed by the alloy to perform all three processes, it is noteworthy that for alloy 40% Zn-60% Al + 60% Bi, wherein the microstructure was observed characteristic ternary alloy is absorbs more heat and the eutectic reaction that absorbs less heat to conduct the reaction so as
fusion eutectoid, since the ternary eutectic reaction is taking place to a greater extent.

- **85%Zn-15%Al.** For this alloy, the microstructure changes significantly with respect to the two previous alloys and is formed by phase dendrites $[Al(fcc-\alpha)]$ monotéctico aggregate surrounded $[Al(fcc-\alpha) + Zn(hcp-\beta)]$. The microstructure of the ternary eutectic reaction has been observed also for this set of alloys, although not for all compositions. Thermal analysis reveals that the successive additions of bismuth not significantly influence the temperature of the eutectic reaction, and monotéctica ternary eutectoid, only a trend upward in the melting temperature with increasing bismuth content.

- **94%Zn-6%Al.** The alloy corresponds to the eutectic composition, but in the observed microstructural characterization that is slightly hypoeutectic as dendrites formed without phase $[Al(fcc-\alpha)]$. Therefore alloys 85% Zn-15% Al and 94% Zn-6% Al have a microstructure similar. The only noticeable difference is that the ternary eutectic microstructure has been formed further on alloys of 94% Zn-6% Al Thermal analysis shows that the bismuth additions only influence on the temperature data and absorbed heat in the ternary eutectic reaction, showing higher values for those alloys which is formed as many ternary eutectic microstructure.

- **96%Zn-4%Al.** This composition corresponds to a hypereutectoid alloy, and observed by light microscopy primary dendrites solidification phase $[Zn(hcp-\beta)]$ surrounded the monotectic aggregate $[A(fcc-\alpha) + Zn(hcp-\beta)]$. For these alloys have also been observed characteristic ternary eutectic microstructure. Thermal analysis reveals that for alloys containing 60% bismuth alloy that is to the greatest amount of ternary eutectic microstructure is formed, is that it absorbs more heat in this transformation and the alloy having a higher temperature to this transformation.
7.4 Conclusions

- The addition of bismuth to the zinc-based alloy molten aluminum causes the formation of two liquids which follow a different path of solidification, resulting in particular transformations. Given the low solubility of bismuth both zinc and aluminium, this is at the grain boundaries when the alloy solidified. The eutectic microstructure constituted by spikes in the phase rich black \([\text{Zn}(\text{hcp-}\beta)] \) embedded in the ternary bismuth matrix, has not been obtained homogeneously to all the alloys studied.

- The microstructure of the alloys 20% Zn-80% Al and 40% Zn-60% Al, are very similar. They consist of huge rosettes phase \(\text{Al} \text{(fcc-}\alpha) \) surrounded the monotetic aggregate \([\text{Al}(\text{fcc-}\alpha) + \text{Zn}(\text{hcp-}\beta)] \), which is located at the grain boundaries. With respect to the three remaining alloys, 85% Zn-15% Al, 94% Zn-4% Al and 96% Zn-4% Al, the microstructure consists observed phase dendrites \(\text{Al}(\text{fcc-}\alpha) \) and \(\text{Zn}(\text{hcp-}\beta) \), respectively surrounded phases \(\text{Al}(\text{fcc-}\alpha) \) and \(\text{Zn}(\text{hcp-}\beta) \), the result of the transformation monotética and ternary eutectoid. The different type of cooling, which have undergone all samples; causes in the samples were slowly cooled within the furnace having a microstructure more developed than the air-cooled to room temperature.

- Use of the Thermo-Calc program has served to find the transformation that occurs in these alloys and the temperature evolution of the different phases. The experimental values of the different transformation temperature, obtained by thermal analysis technique used DTA were not theoretically coincide with those obtained using the Thermo-Calc program, there is a discrepancy between 2-5 °C, for transformations ternary eutectic and monotética respectively. In the other technique of thermal analysis, DSC values were obtained and disposed of heat absorbed by the alloys for carrying out various transformations that take place. Note that the transformation is the ternary eutectic was more sensitive to various additions of bismuth performed, with values of temperature and heat absorbed than those presented by the other alloys with minor additions of bismuth.
BIBLIOGRAFÍA
8. BIBLIOGRAFÍA

82. R.Bruce, High heating rate DSC. TA Instruments Application Briefs. TA297.

92. Instruments, T., Polyester heat history detection by DSC. TA Instruments Application Briefs. TA128.

133. Instruments, T., “Polymer Heats of Fusion”, in *Thermal applications note*. : New Castle, DE.

134. Instruments, T., *Determination of Polymer Crystallinity by DSC*, in *Thermal application note*: New Castle DE.

135. Instruments, T., *Determination of Polymer Crystallinity by DSC*, in *Thermal application note*: New Castle DE.

