Universidad Complutense de Madrid
E-Prints Complutense

Asymptotic properties of reaction-diffusion systems modeling chemotaxis

Impacto

Descargas

Último año

Herrero, Miguel A. (2000) Asymptotic properties of reaction-diffusion systems modeling chemotaxis. In Applied and Industrial Mathematics, Venice—2, 1998. Springer, Dordrecht, pp. 89-108. ISBN 978-94-010-5823-0

URL Oficial: http://link.springer.com/book/10.1007/978-94-011-4193-2/page/1


URLTipo de URL
http://link.springer.comEditorial


Resumen

This paper examines a system first introduced by Keller and Segel in 1970 to model the tendency of slime molds to move towards higher concentrations of a chemical which they themselves secrete. The paper particularly addresses the question of blow-up or chemotactic collapse, i.e., the formation of single point aggregations of the cells. Results are discussed for 2 and 3 space dimensions. Asymptotic computations yield information on the manner of the blow-up.


Tipo de documento:Sección de libro
Información Adicional:

Selected papers from the International Venice–2/Symposium held in Venice, June 11–16, 1998

Materias:Ciencias Biomédicas > Biología > Biomatemáticas
Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:22637
Depositado:27 Aug 2013 07:42
Última Modificación:22 Nov 2013 19:20

Descargas en el último año

Sólo personal del repositorio: página de control del artículo