Publication:
Thermodynamics of a pure substance at the triple point

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Association of Physics Teachers
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A thermodynamic study of a pure substance at the triple point. is presented. In particular, we show that the mass fractions of the phases coexisting at the triple point obey lever rules in the specific entropy-specific volume diagram, and the relative changes in the mass fractions present in each phase along reversible isochoric and adiabatic processes of a pure substance at the triple point are governed by the relative sizes of the segments of the triple-point line in the pressure-specific volume diagram and in the temperature-specific entropy diagram. Applications to the ordinary triple point of water and to the triple point of Al2SiO5 polymorphs are presented.
Description
© 2007 American Association of Physics Teacher. One of the authors (S.V.) acknowledges financial support by the Ministerio de Educación y Ciencia of Spain under Grant Nos. FIS2005-05081 FEDER and FIS2006-03764 FEDER.
UCM subjects
Unesco subjects
Keywords
Citation
1. H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90), Metrologia 27, 3–10 (1990), http://dx.doi.org/10.1088/0026-1394/27/1/002. 2. R. DeHoff, Thermodynamics in Material Sciences (Wiley, New York, 2005). 3. L. Cemič, Thermodynamics in Mineral Sciences (Springer, Berlin, 2005). 4. D. M. Kerrick, The Al2SiO5 polymorphs, Rev. Mineral. 22, 223–253 (1990). 5. D. L. Withney, Coexisting andalusite, kyanite, and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey, Am. Mineral. 87, 405–416 (2002). 6. J. Kestin, A Course in Thermodynamics (Hemisphere, Washington, 1979), Vol. II, p. 347. 7. J. de Heer, Phenomenological Thermodynamics (Prentice Hall, Englewood, NJ, 1986), p. 267. 8. J. Kestin, A Course in Thermodynamics (Hemisphere, Washington, 1979), Vol. I, pp. 285 and J. Kestin, A Course in Thermodynamics (Hemisphere, Washington, 1979), Vol. I, pp. 289–292. 9. F. Schwabl, Statistical Mechanics (Springer, Berlin, 2006), 2nd ed., pp. 141–144. 10. J. W. Gibbs, A method of geometrical representation of the thermodynamic properties of substances by means of surfaces, Trans. Conn. Acad. Arts Sci. 2, 382–404 (1873). 11. M. W. Zemansky and R. C. Herman, The Gibbs and Mollier thermodynamic surfaces, Am. J. Phys. 4, 194–196 (1936), http://dx.doi.org/10.1119/1.1999114. 12. G. Bruhat, Thermodynamique (Masson et Cie., Paris, 1962), 5th ed., pp. 138 and G. Bruhat, Thermodynamique (Masson et Cie., Paris, 1962), 5th ed., 299–301. 13. G. E. Gyftopoulos and G. P. Beretta, Thermodynamics Foundations and Applications (Macmillan, New York, 1991), pp. 298 and G. E. Gyftopoulos and G. P. Beretta, Thermodynamics Foundations and Applications (Macmillan, New York, 1991). 14. H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985), 2nd ed., p. 28. 15. C. B. P. Finn, Thermal Physics (Chapman & Hall, London, 1993), 2nd ed., pp. 14. 16. M. Bailyn, A Survey of Thermodynamics (American Institute of Physics, New York, 1994), pp. 46, M. Bailyn, A Survey of Thermodynamics (American Institute of Physics, New York, 1994), p. 221, and M. Bailyn, A Survey of Thermodynamics (American Institute of Physics, New York, pp. 258–259. 17. G. Carrington, Basic Thermodynamics (Oxford U. P., New York, 1994), pp. 8 and G. Carrington, Basic Thermodynamics (Oxford U. P., New York, 1994), 293–294. 18. M. W. Zemansky and R. H. Dittman, Heat and Thermodynamics (McGraw-Hill, New York, 1997), 7th ed., pp. 25 and M. W. Zemansky and R. H. Dittman, Heat and Thermodynamics (McGraw-Hill, New York, 1997), 7th ed.pp. , 225–228. 19. R. E. Sonntang and G. J. Van Wylen, Introduction to Thermodynamics Classical and Statistical (Wiley, New York, 1991), Table A. 1SI, pp. 627 and R. E. Sonntang and G. J. Van Wylen, Introduction to Thermodynamics Classical and Statistical (Wiley, New York, 1991), Table A.1.5SI, p. 643. 20. B. S. Hemingway, R. A. Robie, H. T. Evans, Jr., and D. M. Kerrick, Heat capacities and entropies of sillimanite, fibriolite, andalusite, kyanite, and quartz and the Al2SiO5 phase diagram, Am. Mineral. 76, 1597–1613 (1991). 21. T. J. B. Holland and R. Powell, An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol. 16, 309–343 (1998).
Collections