Publication:
Probing the infrared quark mass from highly excited baryons

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-08-28
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We argue that three-quark excited states naturally group into quartets, split into two parity doublets, and that the mass splittings between these parity partners decrease higher up in the baryon spectrum. This decreasing mass difference can be used to probe the running quark mass in the midinfrared power-law regime. A measurement of masses of high-partial-wave resonances should be sufficient to unambiguously establish the approximate degeneracy. We test this concept with the first computation of excited high-j baryon masses in a chirally invariant quark model.
Description
© 2009 The American Physical Society. We thank L. Glozman for useful conversations and grants FPA 2008-00592/FPA, FIS2008-01323, CERN/FP/83582/2008, POCI/FP/81933/2007, /81913/2007, PDCT/FP/63907/2005, and /63923/2005, Spain-Portugal billateral grant HP2006-0018/E-56/07, as well as the Scientific Research Fund of Flanders.
Unesco subjects
Keywords
Citation
[1] L.Y. Glozman, Phys. Lett. B 475, 329 (2000). [2] R. F. Wagenbrunn and L.Y. Glozman, Phys. Lett. B 643, 98 (2006); T. D. Cohen and L.Y. Glozman, Mod. Phys. Lett. A 21, 1939 (2006); L.Y. Glozman, A.V. Nefediev, and J. E. Ribeiro, Phys. Rev. D 72, 094002 (2005). [3] E. S. Swanson, Phys. Lett. B 582, 167 (2004). [4] A. Le Yaouanc et al., Phys. Rev. D 31, 137 (1985). [5] P. Bicudo et al., Phys. Lett. B 442, 349 (1998). [6] C. E. DeTar and T. Kunihiro, Phys. Rev. D 39, 2805 (1989); D. Jido, T. Hatsuda, and T. Kunihiro, Phys. Rev. Lett. 84, 3252 (2000). [7] S. Sarkar et al., arXiv:0902.3150. [8] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008). [9] J. Segovia, D. R. Entem, and F. Fernandez, Phys. Lett. B 662, 33 (2008). [10] P. O. Bowman et al., Nucl. Phys. B, Proc. Suppl. 161, 27 (2006); M. B. Parappilly et al., Phys. Rev. D 73, 054504 (2006); S. Furui, Few-Body Syst. 45, 51 (2009); 46, 73 (2009). [11] R. Alkofer et al., Ann. Phys. (N.Y.) 324, 106 (2009). [12] For a discussion on HQCD, a good starting point is N. H. Christ and T. D. Lee, Phys. Rev. D 22, 939 (1980). [13] A.V. Nefediev, J. E. Ribeiro, and A. P. Szczepaniak, JETP Lett. 87, 271 (2008). [14] W. Lucha and F. F. Schoberl, Mod. Phys. Lett. A 5, 2473 (1990). [15] For a linear potential, with m(k)α K^(-4) , |M^+- M^-| α 1/j^3 . If, on the contrary, the quark mass is constant, and still the potential remains chirally invariant, then the decrease follows a slower j^_1. We can retrospectively understand analytically the q ‾q numerical results of [2], with chiral quartets and with the j scaling of the splittings. While their doublet |M^+- M^-|~1/j^3 , their interdoublet splitting follows a weaker 1/j^3/2 as expected in a corollary of Eq. (9) for spin-independent potentials. [16] P. Bicudo, G. Krein, and J. E. Ribeiro, Phys. Rev. C 64, 025202 (2001). [17] T. Hahn, Comput. Phys. Commun. 168, 78 (2005). [18] B. Julia-Diaz et al., Phys. Rev. C 77, 045205 (2008)
Collections