Universidad Complutense de Madrid
E-Prints Complutense

Disjointly strictly-singular inclusions between rearrangement invariant spaces

Impacto

Descargas

Último año

García del Amo Jiménez, Alejandro José y Hernández, Francisco L. y Sánchez de los Reyes, Víctor Manuel y Semenov, Evgeny M. (2000) Disjointly strictly-singular inclusions between rearrangement invariant spaces. Journal London Mathematical Society, 62 (1). pp. 239-252. ISSN 1469-7750

URL Oficial: http://jlms.oxfordjournals.org/content/62/1/239.abstract


URLTipo de URL
http://www.oxfordjournals.org/Editorial


Resumen

A linear operator between two Banach spaces X and Y is strictly-singular (or Kato) if it fails to be an isomorphism on any infinite dimensional subspace. A weaker notion for Banach lattices introduced in [8] is the following one: an operator T from a Banach lattice X to a Banach space Y is said to be disjointly strictly-singular if there is no disjoint sequence of non-null vectors (xn)n∈N in X such that the restriction of T to the subspace [(xn)∞n=1] spanned by the vectors (xn)n∈N is an isomorphism. Clearly every strictly-singular operator is disjointly strictly-singular but the converse is not true in general (consider for example the canonic inclusion Lq[0, 1]↪Lp[0, 1] for 1≤p<q<∞). In the special case of considering Banach lattices X with a Schauder basis of disjoint vectors both concepts coincide. The notion of disjointly strictly-singular has turned out to be a useful tool in the study of lattice structure of function spaces (cf. [7–9]). In general the class of all disjointly strictly-singular operators is not an operator ideal since it fails to be stable with respect to the composition on the right.
The aim of this paper is to study when the inclusion operators between arbitrary rearrangement invariant function spaces E[0, 1] ≡ E on the probability space [0, 1] are disjointly strictly-singular operators.


Tipo de documento:Artículo
Palabras clave:Disjointly strictly-singular; Banach lattice; Inclusions; Rearrangement invariant (r.i.) function spaces; Characterizations of L 1 and L 1 among the r.i. function spaces
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:22843
Depositado:18 Sep 2013 15:32
Última Modificación:08 Nov 2013 17:33

Descargas en el último año

Sólo personal del repositorio: página de control del artículo