Publication:
On the non-attractive character of gravity in f(R) theories

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-07
Authors
Albareti, F. D.
Cruz Dombriz, Álvaro de la
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Iop Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Raychaudhuri equation is found provided that particular energy conditions are assumed and regardless the considered solution of the Einstein's equations. This fact is usually interpreted as a manifestation of the attractive character of gravity. Nevertheless, a positive contribution to Raychaudhuri equation from space-time geometry should occur since this is the case in an accelerated expanding Robertson-Walker model for congruences followed by fundamental observers. Modified gravity theories provide the possibility of a positive contribution although the standard energy conditions are assumed. We address this important issue in the context of f(R) theories, deriving explicit upper bounds for the contribution of space-time geometry to the Raychaudhuri equation. Then, we examine the parameter constraints for some paradigmatic f(R) models in order to ensure a positive contribution to this equation. Furthermore, we consider the implications of these upper bounds in the equivalent formulation of f(R) theories as a Brans-Dicke model.
Description
©2013 IOP Publishing Ltd and Sissa Medialab srl This work has been supported by MINECO (Spain) project numbers FIS2011-23000, FPA2011-27853-C02-01 and Consolider-Ingenio MULTIDARK CSD2009-00064. AdlCD also acknowledges financial support from Marie Curie - Beatriu de Pinós contract BP-B00195, Generalitat de Catalunya and ACGC, University of Cape Town.
Unesco subjects
Keywords
Citation
[1] Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE]; Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE]; Supernova Search Team collaboration, J.L. Tonry et al., Cosmological results from high-z supernovae, Astrophys. J. 594 (2003) 1 [astro-ph/0305008] [INSPIRE]. [2] A. Dobado and A.L. Maroto, Some consequences of the effective low-energy Lagrangian for gravity, Phys. Lett. B 316 (1993) 250 [Erratum ibid. B 321 (1994) 435] [hep-ph/9309221] [INSPIRE]; S. Nojiri and S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, eConf C 0602061 (2006) 06 [Int. J. Geom. Meth. Mod. Phys. 4 (2007) 115] [hep-th/0601213] [INSPIRE] [INSPIRE]; S. Nojiri and S.D. Odintsov, Unied cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59 [arXiv:1011.0544] [INSPIRE]; S. Capozziello and M. Francaviglia, Extended Theories of Gravity and their Cosmological and Astrophysical Applications, Gen. Rel. Grav. 40 (2008) 357 [arXiv:0706.1146] [INSPIRE]; T.P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE]; F.S. Lobo, The Dark side of gravity: Modified theories of gravity, arXiv:0807.1640 [INSPIRE]; S. Capozziello and V. Faraoni, Fundamental Theories of Physics. Vol. 170: Beyond Einstein Gravity, Springer, Dordrecht Netherlands (2011). [3] C. Lanczos, Electromagnetism as a natural Property of Riemannian Geometry, Z. Phys. 73 (1932) 147; C. Lanczos, A remarkable property of the Riemann-Christo el tensor in four dimensions, Ann.Math. 39 (1938) 842; D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE]. [4] G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov and S. Zerbini, Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem, Phys. Rev. D 73 (2006) 084007 [hep-th/0601008] [INSPIRE]; S. Nojiri and S.D. Odintsov, Modified Gauss-Bonnet theory as gravitational alternative for dark energy, Phys. Lett. B 631 (2005) 1 [hep-th/0508049] [INSPIRE]; S. Nojiri and S.D. Odintsov, Modified gravity with negative and positive powers of the curvature: Unication of the inflation and of the cosmic acceleration, Phys. Rev. D 68 (2003) 123512 [hep-th/0307288] [INSPIRE]; E. Elizalde, R. Myrzakulov, V. Obukhov and D. S aez-G omez, LambdaCDM epoch reconstruction from F(R;G) and modied Gauss-Bonnet gravities, Class. Quant. Grav. 27 (2010) 095007 [arXiv:1001.3636] [INSPIRE]; R. Myrzakulov, D. S aez-G omez and A. Tureanu, On the CDM Universe in f(G) gravity, Gen. Rel. Grav. 43 (2011) 1671 [arXiv:1009.0902] [INSPIRE]; A. de la Cruz-Dombriz and D. Sáez-Gómez, On the stability of the cosmological solutions in f(R;G) gravity, Class. Quant. Grav. 29 (2012) 245014 [arXiv:1112.4481] [INSPIRE]. [5] C. Brans and R. Dicke, Mach's principle and a relativistic theory of gravitation, Phys. Rev. 124 (1961) 925 [INSPIRE]; C. Brans, Mach's Principle and a Relativistic Theory of Gravitation. II, Phys. Rev. 125 (1962)2194 [INSPIRE]; J. García-Bellido, A.D. Linde and D.A. Linde, Fluctuations of the gravitational constant in the inflationary Brans-Dicke cosmology, Phys. Rev. D 50 (1994) 730 [astro-ph/9312039] [INSPIRE]; J.A. Cembranos, K.A. Olive, M. Peloso and J.-P. Uzan, Quantum Corrections to the Cosmological Evolution of Conformally Coupled Fields, JCAP 07 (2009) 025 [arXiv:0905.1989] [INSPIRE]; T. Biswas, J.A. Cembranos and J.I. Kapusta, Thermal Duality and Hagedorn Transition from pradic Strings, Phys. Rev. Lett. 104 (2010) 021601 [arXiv:0910.2274] [INSPIRE]; T. Biswas, J.A. Cembranos and J.I. Kapusta, Thermodynamics and Cosmological Constant of Non-Local Field Theories from p-Adic Strings, JHEP 10 (2010) 048 [arXiv:1005.0430] [INSPIRE]; T. Biswas, J.A. Cembranos and J.I. Kapusta, Finite Temperature Solitons in Non-Local Field Theories from p-Adic Strings, Phys. Rev. D 82 (2010) 085028 [arXiv:1006.4098] [INSPIRE]. [6] L. Ford, Inflation driven by a vector eld, Phys. Rev. D 40 (1989) 967 [INSPIRE]; J. Beltrán Jiménez and A.L. Maroto, A cosmic vector for dark energy, Phys. Rev. D 78 (2008) 063005; J. Beltrán Jiménez and A.L. Maroto, Cosmological electromagnetic elds and dark energy, JCAP 03 (2009) 016 [arXiv:0811.0566] [INSPIRE]; J. Beltran Jimenez and A.L. Maroto, Cosmological evolution in vector-tensor theories of gravity, Phys. Rev. D 80 (2009) 063512 [arXiv:0905.1245] [INSPIRE]; T. Koivisto and D.F. Mota, Vector Field Models of Inflation and Dark Energy, JCAP 08 (2008) 021 [arXiv:0805.4229] [INSPIRE]; J. Cembranos, C. Hallabrin, A. Maroto and S.N. Jareno, Isotropy theorem for cosmological vector fields, Phys. Rev. D 86 (2012) 021301 [arXiv:1203.6221] [INSPIRE]; J. Cembranos, A. Maroto and S.N. Jareno, Isotropy theorem for cosmological Yang-Mills theories, Phys. Rev. D 87 (2013) 043523 [arXiv:1212.3201] [INSPIRE]. [7] J. Alcaraz, J. Cembranos, A. Dobado and A.L. Maroto, Limits on the brane uctuations mass and on the brane tension scale from electron positron colliders, Phys. Rev. D 67 (2003) 075010 [hep-ph/0212269] [INSPIRE]; L3 collaboration, P. Achard et al., Search for branons at LEP, Phys. Lett. B 597 (2004) 145 [hep-ex/0407017] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Cosmological and astrophysical limits on brane fluctuations, Phys. Rev. D 68 (2003) 103505 [hep-ph/0307062] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Phenomenological implications of brane world scenarios with low tension, AIP Conf. Proc. 670 (2003) 235 [hep-ph/0301009] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Dark geometry, Int. J. Mod. Phys. D 13 (2004) 2275 [hep-ph/0405165] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Branon search in hadronic colliders, Phys. Rev. D 70 (2004) 096001 [hep-ph/0405286] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Branon radiative corrections to collider physics and precision observables, Phys. Rev. D 73 (2006) 035008 [hep-ph/0510399] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Dark matter clues in the muon anomalous magnetic moment, Phys. Rev. D 73 (2006) 057303 [hep-ph/0507066] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Some model-independent phenomenological consequences of exible brane worlds, J. Phys. A 40 (2007) 6631 [hep-ph/0611024] [INSPIRE]. [8] D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress Toward a Theory of Supergravity, Phys. Rev. D 13 (1976) 3214 [INSPIRE]; S. Deser and B. Zumino, Consistent Supergravity, Phys. Lett. B 62 (1976) 335 [INSPIRE]; E. Cremmer, B. Julia and J. Scherk, Supergravity Theory in Eleven-Dimensions, Phys. Lett. B 76 (1978) 409 [INSPIRE]; L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE]; N. Ohta, Grand uni ed theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE]; L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal Low-Energy Supergravity, Nucl. Phys. B 221 (1983) 495 [INSPIRE]; H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE]; J.A. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP solutions to small scale structure problems, Phys. Rev. Lett. 95 (2005) 181301 [hep-ph/0507150] [INSPIRE]; J. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, Gravitino and axino superWIMPs, AIP Conf. Proc. 903 (2007) 591 [hep-ph/0701011] [INSPIRE]; J.A. Cembranos, J.L. Feng and L.E. Strigari, Resolving Cosmic Gamma Ray Anomalies with Dark Matter Decaying Now, Phys. Rev. Lett. 99 (2007) 191301 [arXiv:0704.1658] [INSPIRE]; J.A. Cembranos, J.L. Feng and L.E. Strigari, Exotic Collider Signals from the Complete Phase Diagram of Minimal Universal Extra Dimensions, Phys. Rev. D 75 (2007) 036004 [hep-ph/0612157] [INSPIRE]; M.R. Garousi, Ricci curvature corrections to type-II supergravity, Phys. Rev. D 87 (2013) 025006 [arXiv:1210.4379] [INSPIRE]. [9] G.W. Horndeski, Second-order scalar-tensor eld equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE]; J.D. Bekenstein, The Relation between physical and gravitational geometry, Phys. Rev. D 48 (1993) 3641 [gr-qc/9211017] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Brane skyrmions and wrapped states, Phys. Rev. D 65 (2002) 026005 [hep-ph/0106322] [INSPIRE]; J. Cembranos, A. de la Cruz-Dombriz, A. Dobado and A.L. Maroto, Is the CMB Cold Spot a gate to extra dimensions?, JCAP 10 (2008) 039 [arXiv:0803.0694] [INSPIRE]; J. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R. Lineros and A. Maroto, Photon spectra from WIMP annihilation, Phys. Rev. D 83 (2011) 083507 [arXiv:1009.4936] [INSPIRE]; J.A. Cembranos, J.L. Diaz-Cruz and L. Prado, Impact of DM direct searches and the LHC analyses on branon phenomenology, Phys. Rev. D 84 (2011) 083522 [arXiv:1110.0542] [INSPIRE]; J. Cembranos, A. de la Cruz-Dombriz, V. Gammaldi and A. Maroto, Detection of branon dark matter with gamma ray telescopes, Phys. Rev. D 85 (2012) 043505 [arXiv:1111.4448] [INSPIRE]; J. Cembranos, V. Gammaldi and A. Maroto, Possible dark matter origin of the gamma ray emission from the galactic center observed by HESS, Phys. Rev. D 86 (2012) 103506 [arXiv:1204.0655] [INSPIRE]; J.A. Cembranos and L.E. Strigari, Diffuse MeV Gamma-rays and Galactic 511 keV Line from Decaying WIMP Dark Matter, Phys. Rev. D 77 (2008) 123519 [arXiv:0801.0630] [INSPIRE]; M. Zumalacarregui, T. Koivisto, D. Mota and P. Ruiz-Lapuente, Disformal Scalar Fields and the Dark Sector of the Universe, JCAP 05 (2010) 038 [arXiv:1004.2684] [INSPIRE]; T.S. Koivisto, D.F. Mota and M. Zumalacarregui, Screening Modications of Gravity through Disformally Coupled Fields, Phys. Rev. Lett. 109 (2012) 241102 [arXiv:1205.3167] [INSPIRE]; M. Zumalacarregui, T.S. Koivisto and D.F. Mota, DBI Galileons in the Einstein Frame: Local Gravity and Cosmology, Phys. Rev. D 87 (2013) 083010 [arXiv:1210.8016] [INSPIRE]. [10] V.A. Kostelecky and S. Samuel, Spontaneous Breaking of Lorentz Symmetry in String Theory, Phys. Rev. D 39 (1989) 683 [INSPIRE]; D. Colladay and V.A. Kostelecky, CPT violation and the standard model, Phys. Rev. D 55 (1997) 6760 [hep-ph/9703464] [INSPIRE]; J.R. Ellis, N. Mavromatos and D.V. Nanopoulos, A microscopic recoil model for light cone uctuations in quantum gravity, Phys. Rev. D 61 (2000) 027503 [gr-qc/9906029] [INSPIRE]; J. Alfaro, H.A. Morales-Tecotl and L.F. Urrutia, Quantum gravity corrections to neutrino propagation, Phys. Rev. Lett. 84 (2000) 2318 [gr-qc/9909079] [INSPIRE]; G. Amelino-Camelia, Doubly special relativity, Nature 418 (2002) 34 [gr-qc/0207049] [INSPIRE]; J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002) 190403 [hep-th/0112090] [INSPIRE]; J. Cembranos, A. Rajaraman and F. Takayama, CPT violation in the top sector, hep-ph/0512020 [INSPIRE]; J. Cembranos, A. Rajaraman and F. Takayama, Searching for CPT violation in tt production, Europhys. Lett. 82 (2008) 21001 [hep-ph/0609244] [INSPIRE]; S. Ghosh and P. Pal, Deformed Special Relativity and Deformed Symmetries in a Canonical Framework, Phys. Rev. D 75 (2007) 105021 [hep-th/0702159] [INSPIRE]. [11] T.P. Sotiriou, 6 + 1 lessons from f(R) gravity, J. Phys. Conf. Ser. 189 (2009) 012039 [arXiv:0810.5594] [INSPIRE]; S. Capozziello and M. De Laurentis, Extended Theories of Gravity, Phys. Rept. 509 (2011) 167 [arXiv:1108.6266] [INSPIRE]; S. Nojiri and S.D. Odintsov, Uni ed cosmic history in modi ed gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59 [arXiv:1011.0544] [INSPIRE]; T.P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE]; A. de la Cruz-Dombriz and D. S aez-G omez, Black holes, cosmological solutions, future singularities, and their thermodynamical properties in modi ed gravity theories, Entropy 14 (2012) 1717. [12] T.P. Sotiriou, The Nearly Newtonian regime in non-linear theories of gravity, Gen. Rel. Grav. 38 (2006) 1407 [gr-qc/0507027] [INSPIRE]; S. Nojiri and S.D. Odintsov, Uni ed cosmic history in modi ed gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59 [arXiv:1011.0544] [INSPIRE]; B. Jain and J. Khoury, Cosmological Tests of Gravity, Annals Phys. 325 (2010) 1479 [arXiv:1004.3294] [INSPIRE]; A. de la Cruz-Dombriz, A. Dobado and A.L. Maroto, On the evolution of density perturbations in f(R) theories of gravity, Phys. Rev. D 77 (2008) 123515 [arXiv:0802.2999] [INSPIRE]; A. de la Cruz-Dombriz, A. Dobado and A. Maroto, Comment on \Viable singularity-free f(R) gravity without a cosmological constant", Phys. Rev. Lett. 103 (2009) 179001 [arXiv:0910.1441] [INSPIRE]; M. Abdelwahab, A. Abebe, A. de la Cruz Dombriz and P.K.S. Dunsby, Covariant gauge-invariant perturbations in multifluid f(R) gravity, Class. Quant. Grav. 29 (2012) 135011 [arXiv:1110.1191]; J. Cembranos, A. de la Cruz-Dombriz and B. Montes N u~nez, Gravitational collapse in f(R) theories, JCAP 04 (2012) 021 [arXiv:1201.1289] [INSPIRE]; B. Montes N u~nez, J. Cembranos and A. de la Cruz-Dombriz, On the collapse in fourth order gravities, AIP Conf. Proc. 1458 (2011) 491 [arXiv:1210.7968] [INSPIRE]; H. Bourhrous, A. de la Cruz-Dombriz and P. Dunsby, CMB Tensor Anisotropies in Metric f(R) Gravity, AIP Conf. Proc. 1458 (2011) 343 [arXiv:1202.3862] [INSPIRE]; A. Abebe, A. de la Cruz-Dombriz and P.K.S. Dunsby, Large Scale Structure Constraints for a Class of f(R) Theories of Gravity, arXiv:1304.3462 [INSPIRE]; F. Alvarenga, A. de la Cruz-Dombriz, M. Houndjo, M. Rodrigues and D. S aez-G omez, Dynamics of scalar perturbations in f(R; T) gravity, Phys. Rev. D 87 (2013) 103526 [arXiv:1302.1866] [INSPIRE]. [13] S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1973). [14] R.M. Wald, General Relativity, University of Chicago Press, Chicago U.S.A. (1984). [15] A. Raychaudhuri, Relativistic cosmology. 1, Phys. Rev. 98 (1955) 1123 [INSPIRE]. [16] R. Sachs, Gravitational waves in general relativity. 6. The outgoing radiation condition, Proc. Roy. Soc. Lond. A 264 (1961) 309 [INSPIRE]. [17] J. Ehlers, Contributions to the relativistic mechanics of continuous media, Gen. Rel. Grav. 25 (1993) 1225, English translation of original German article by P. Jordan, J. Ehlers, W. Kundt and R.K. Sachs, [Abh. Akad. Wiss. Lit. Mainz. Nat. Kl. 11 (1961) 792] [INSPIRE]. [18] G.F.R. Ellis, On the Raychaudhuri equation, Pramana 69 (2007) 15; S. Kar and S. SenGupta, The Raychaudhuri equations: A Brief review, Pramana 69 (2007) 49 [gr-qc/0611123] [INSPIRE]; N. Dadhich, Derivation of the Raychaudhuri equation, gr-qc/0511123 [INSPIRE]. [19] F. Albareti, J. Cembranos and A. de la Cruz-Dombriz, Focusing of geodesic congruences in an accelerated expanding Universe, JCAP 12 (2012) 020 [arXiv:1208.4201] [INSPIRE]. [20] L.P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton U.S.A. (1926). [21] J. Santos, J. Alcaniz, M. Reboucas and F. Carvalho, Energy conditions in f(R)-gravity, Phys. Rev. D 76 (2007) 083513 [arXiv:0708.0411] [INSPIRE]; J. Santos, M. Reboucas and J. Alcaniz, Energy conditions constraints on a class of f(R)-gravity, Int. J. Mod. Phys. D 19 (2010) 1315 [arXiv:0807.2443] [INSPIRE]. [22] K. Atazadeh, A. Khaleghi, H. Sepangi and Y. Tavakoli, Energy conditions in f(R) gravity and Brans-Dicke theories, Int. J. Mod. Phys. D 18 (2009) 1101 [arXiv:0811.4269] [INSPIRE]. [23] O. Bertolami and M.C. Sequeira, Energy Conditions and Stability in f(R) theories of gravity with non-minimal coupling to matter, Phys. Rev. D 79 (2009) 104010 [arXiv:0903.4540] [INSPIRE]. [24] N.M. Garcia, T. Harko, F.S. Lobo and J.P. Mimoso, Energy conditions in modified Gauss-Bonnet gravity, Phys. Rev. D 83 (2011) 104032 [arXiv:1011.4159] [INSPIRE]; N. Montelongo Garcia, F.S. Lobo, J.P. Mimoso and T. Harko, f(G) modi ed gravity and the energy conditions, J. Phys. Conf. Ser. 314 (2011) 012056 [arXiv:1012.0953] [INSPIRE]. [25] A. Banijamali, B. Fazlpour and M. Setare, Energy Conditions in f(G) Modi�ed Gravity with Non-minimal Coupling to Matter, Astrophys. Space Sci. 338 (2012) 327 [arXiv:1111.3878] [INSPIRE]. [26] Y.-Y. Zhao et al., Modied f(G) gravity models with curvature-matter coupling, Eur. Phys. J. C 72 (2012) 1924 [arXiv:1203.5593] [INSPIRE]. [27] A. de la Cruz-Dombriz and A. Dobado, A f(R) gravity without cosmological constant, Phys. Rev. D 74 (2006) 087501 [gr-qc/0607118] [INSPIRE]; P.K. Dunsby, E. Elizalde, R. Goswami, S. Odintsov and D.S. Gomez, On the LCDM Universe in f(R) gravity, Phys. Rev. D 82 (2010) 023519 [arXiv:1005.2205] [INSPIRE]; S. Nojiri and S.D. Odintsov, Modi ed f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe, Phys. Rev. D 74 (2006) 086005 [hep-th/0608008] [INSPIRE]. [28] A. Dolgov and M. Kawasaki, Can modi ed gravity explain accelerated cosmic expansion?, Phys. Lett. B 573 (2003) 1 [astro-ph/0307285] [INSPIRE]. [29] T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modied Gravity and Cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE]. [30] S. Capozziello and S. Vignolo, The Cauchy problem for f(R)-gravity: An Overview, Int. J. Geom. Meth. Mod. Phys. 9 (2012) 1250006 [arXiv:1103.2302] [INSPIRE]. [31] L. Pogosian and A. Silvestri, The pattern of growth in viable f(R) cosmologies, Phys. Rev. D 77 (2008) 023503 [Erratum ibid. D 81 (2010) 049901] [arXiv:0709.0296] INSPIRE]. [32] J. Cembranos, The Newtonian limit at intermediate energies, Phys. Rev. D 73 (2006) 64029 [gr-qc/0507039] [INSPIRE]. [33] B. Jain, V. Vikram and J. Sakstein, Astrophysical Tests of Modi ed Gravity: Constraints from Distance Indicators in the Nearby Universe, arXiv:1204.6044 [INSPIRE]; L. Lombriser, A. Slosar, U. Seljak and W. Hu, Constraints on f(R) gravity from probing the large-scale structure, Phys. Rev. D 85 (2012) 124038 [arXiv:1003.3009] [INSPIRE]; L. Lombriser et al., Cluster Density Profiles as a Test of Modi ed Gravity, Phys. Rev. D 85 (2012) 102001 [arXiv:1111.2020] [INSPIRE]; Y.-S. Song, H. Peiris and W. Hu, Cosmological Constraints on f(R) Acceleration Models, Phys. Rev. D 76 (2007) 063517 [arXiv:0706.2399] [INSPIRE]. [34] Y.-S. Song, W. Hu and I. Sawicki, The Large Scale Structure of f(R) Gravity, Phys. Rev. D 75 (2007) 044004 [astro-ph/0610532] [INSPIRE]. [35] R. Bousso, The Holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE]. [36] S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Is cosmic speed - up due to new gravitational physics?, Phys. Rev. D 70 (2004) 043528 [astro-ph/0306438] [INSPIRE]. [37] V. Faraoni, Matter instability in modified gravity, Phys. Rev. D 74 (2006) 104017 [astro-ph/0610734] [INSPIRE]. [38] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE]. [39] J.A. Cembranos, Dark Matter from R2-gravity, Phys. Rev. Lett. 102 (2009) 141301 [arXiv:0809.1653] [INSPIRE]. [40] C.P. Berry and J.R. Gair, Linearized f(R) gravity: gravitational radiation and solar system tests, Phys. Rev. D 83 (2011) 104022 [Erratum ibid. D 85 (2012) 089906] [arXiv:1104.0819] [INSPIRE]. [41] A.L. Erickcek, T.L. Smith and M. Kamionkowski, Solar System tests do rule out 1=R gravity, Phys. Rev. D 74 (2006) 121501 [astro-ph/0610483] [INSPIRE]; M. Fairbairn and S. Rydbeck, Expansion history and f(R) modified gravity, JCAP 12 (2007) 005 [astro-ph/0701900] [INSPIRE]; I. Sawicki and W. Hu, Stability of Cosmological Solution in f(R) Models of Gravity, Phys. Rev. D 75 (2007) 127502 [astro-ph/0702278] [INSPIRE]. [42] L. Amendola, R. Gannouji, D. Polarski and S. Tsujikawa, Conditions for the cosmological viability of f(R) dark energy models, Phys. Rev. D 75 (2007) 083504 [gr-qc/0612180] [INSPIRE]. [43] A. de la Cruz-Dombriz, A. Dobado and A. Maroto, Black Holes in f(R) theories, Phys. Rev. D 80 (2009) 124011 [Erratum ibid. D 83 (2011) 029903] [arXiv:0907.3872] [INSPIRE]; J. Cembranos, A. de la Cruz-Dombriz and P.J. Romero, Kerr-Newman black holes in f(R) theories, arXiv:1109.4519 [INSPIRE]; P. Jimeno Romero, J. Cembranos and A. de la Cruz-Dombriz, Modified spinning black holes, AIP Conf. Proc. 1458 (2011) 439 [arXiv:1202.0853] [INSPIRE]. [44] W. Hu and I. Sawicki, Models of f(R) Cosmic Acceleration that Evade Solar-System Tests, Phys. Rev. D 76 (2007) 064004 [arXiv:0705.1158] [INSPIRE]. [45] V. Faraoni, Solar System experiments do not yet veto modified gravity models, Phys. Rev. 74 (2006) 023529 [gr-qc/0607016] [INSPIRE]; I. Navarro and K. Van Acoleyen, Consistent long distance modification of gravity from inverse powers of the curvature, JCAP 03 (2006) 008 [gr-qc/0511045] [INSPIRE]; G. Calcagni, B. de Carlos and A. De Felice, Ghost conditions for Gauss-Bonnet cosmologies, Nucl. Phys. B 752 (2006) 404 [hep-th/0604201] [INSPIRE]; G.J. Olmo, Post-Newtonian constraints on f(R) cosmologies in metric and Palatini formalism, Phys. Rev. D 72 (2005) 083505 [gr-qc/0505135] [INSPIRE]; G.J. Olmo, The Gravity Lagrangian according to solar system experiments, Phys. Rev. Lett. 95 (2005) 261102 [gr-qc/0505101] [INSPIRE]; S. Capozziello, V. Cardone and A. Troisi, Low surface brightness galaxies rotation curves in the low energy limit of Rn gravity: no need for dark matter?, Mon. Not. Roy. Astron. Soc. 375 (2007) 1423 [astro-ph/0603522] [INSPIRE]. [46] C.P. Berry and J.R. Gair, Linearized f(R) Gravity: Gravitational Radiation and Solar System Tests, Phys. Rev. D 83 (2011) 104022 [Erratum ibid. D 85 (2012) 089906] [arXiv:1104.0819] [INSPIRE]. [47] F.D. Albareti, J.A.R. Cembranos, A. de la Cruz-Dombriz and A. Dobado, The Focusing Theorem and Raychaudhuri equation in f(R) gravity theories, in progress.
Collections