Publication:
What the infrared behavior of QCD vertex functions in Landau gauge can tell us about confinement

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-10
Authors
Alkofer, R.
Fischer, C. S.
Schwenzer, K.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
World Scientific Publ Co Pte Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The infrared behavior of Landau gauge QCD vertex functions is investigated employing a skeleton expansion of the Dyson Schwinger and Renormalization Group equations. Results for the ghost-gluon, three-gluon, four-gluon and quark-gluon vertex functions are presented. Positivity violation of the gluon propagator, and thus gluon confinement, is demonstrated. Results of the Dyson-Schwinger equations for a finite volume are compared to corresponding lattice data. It is analytically demonstrated that a linear rising potential between heavy quarks can be generated by infrared singularities in the dressed quark-gluon vertex. The selfconsistent mechanism that generates these singularities necessarily entails the scalar Dirac amplitudes of the full vertex and the quark propagator. These can only be present when chiral symmetry is broken, either explicitly or dynamically.
Description
© World Scientific Publishing Company R. Alkofer Alkofer thanks the organizers of X Hadron Physics 2007 for inviting him to give a seminar at this extraordinarily interesting workshop. This work has been supported in part by the DFG under contract AL 279/5-1 and by the FWF under contract M979-N16. Hadron Physics Workshop (10. 2007. Florianopolis, Brasil)
Unesco subjects
Keywords
Citation
1. R. Alkofer and J. Greensite, J. Phys. G 34 (2007) S3 [arXiv:hep-ph/0610365]. 2. S. Mandelstam, Phys. Rept. 23 (1976) 245. 3. A. Di Giacomo, B. Lucini, L. Montesi and G. Pa_uti, Phys. Rev. D 61 (2000) 034503 [arXiv:hep lat/9906024]; Phys. Rev. D 61 (2000) 034504 [arXiv:hep-lat/9906025]. 4. J. Greensite, Prog. Part. Nucl. Phys. 51 (2003) 1 [arXiv:hep-lat/0301023]. 5. V. Gribov, Nucl. Phys. B 139 (1978) 1. 6. D. Zwanziger, Nucl. Phys. B 518 (1998) 237; Phys. Rev. Lett. 90 (2003) 102001 [arXiv: hep th/0209105]. 7. R. Alkofer and L. von Smekal, Phys. Rept. 353 (2001) 281 [arXiv:hep-ph/0007355]. 8. C. S. Fischer, J. Phys. G: Nucl. Part. Phys. 32 (2006) R253 [arXiv:hep-ph/0605173]. 9. A. C. Aguilar and A. A. Natale, JHEP 0408 (2004) 057 [arXiv:hep-ph/0408254]. 10. J. M. Maldacena, Phys. Rev. Lett. 80 (1998) 4859 [arXiv:hep-th/9803002]. 11. R. Alkofer, Brazilian J. Phys. 37 (2007) 144 [arXiv:hep ph/0611090]. 12. J. C. Taylor, Nucl. Phys. B 33 (1971) 436. 13. C. Lerche and L. von Smekal, Phys. Rev. D 65 (2002) 125006 [arXiv:hep-ph/0202194]. 14. A. Cucchieri, T. Mendes, and A. Mihara, JHEP 12 (2004) 012 [arXiv:hep- lat/0408034]. 15. W. Schleifenbaum et al., Phys. Rev. D 72 (2005) 014017 [arXiv:hep-ph/0411052]. 16. P. Watson and R. Alkofer, Phys. Rev. Lett. 86 (2001) 5239 [arXiv:hep-ph/0102332]. 17. L. von Smekal, R. Alkofer and A. Hauck, Phys. Rev. Lett. 79 (1997) 3591 [arXiv:hep-ph/9705242]; L. von Smekal, A. Hauck and R. Alkofer, Annals Phys. 267, 1 (1998) 2732 R. Alkofer et al. [arXiv:hep ph/9707327]; A. Hauck, L. von Smekal and R. Alkofer, Comput. Phys. Commun. 112 (1998) 166 arXiv:hep-ph/9804376]. 18. R. Alkofer, C. S. Fischer and F. J. Llanes-Estrada, Phys. Lett. B 611 (2005) 279 [arXiv:hep- h/0412330]; R. Alkofer et al., arXiv:nucl-th/0601032. 19. M. Huber, R. Alkofer, C. S. Fischer and K. Schwenzer, arXiv:0705.3809. 20. C. S. Fischer and J. M. Pawlowski, Phys. Rev. D 75 (2007) 025012 [arXiv:hep-th/0609009]. 21. C. S. Fischer and R. Alkofer, Phys. Lett. B 536 (2002) 177 [arXiv:hep-ph/0202202]; C. S. Fischer, R. Alkofer and H. Reinhardt, Phys. Rev. D 65 2002 094008 [arXiv:hep ph/0202195]; R. Alkofer, C. S. Fischer and L. von Smekal, Acta Phys. Slov. 52 (2002) 191 [arXiv:hep-ph/0205125]. 22. R. Alkofer et al., Phys. Rev. D 70 (2004) 014014 [arXiv:hep-ph/0309077]; Nucl. Phys. Proc. Suppl. 141 (2005) 122. 23. P. O. Bowman et al., arXiv:hep-lat/0703022. 24. L. von Smekal and R. Alkofer, arXiv:hep-ph/0009219. 25. C. S. Fischer and R. Alkofer, Phys. Rev. D 67 (2003) 094020 [arXiv:hep-ph/0301094]. 26. A. Maas, J. Wambach and R. Alkofer, Eur. Phys. J. C 42 (2005) 93 [arXiv:hep-ph/0504019]; A. Maas et al., Eur. Phys. J. C 37 (2004) 335 [arXiv:hep-ph/0408074]; 27. A. Cucchieri, T. Mendes and A. R. Taurines, Phys. Rev. D 67 (2003) 091502. [arXiv:hep-lat/0302022]. 28. A. Cucchieri, A. Maas and T. Mendes, Phys. Rev. D 75 (2007) 076003 [arXiv:hep-lat/0702022]. 29. A. D. Linde, Phys. Lett. B 96 (1980) 289. 30. D. Zwanziger, arXiv:hep-ph/0610021. 31. P. Arnold, these proceedings. 32. A. Maas, A. Cucchieri and T. Mendes, Braz. J. Phys. 37N1B (2007) 219 [arXiv:hep-lat/0610006]. 33. A. Maas, arXiv:0704.0722 [hep-lat]. 34. C. S. Fischer, B. Gruter and R. Alkofer, Annals Phys. 321 (2006) 1918 [arXiv:hep-ph/0506053]. 35. C. S. Fischer, A. Maas, J. M. Pawlowski and L. von Smekal, Annals Phys. (2007), in print [arXiv:hep ph/0701050]. 36. A. Sternbeck et al., PoS LAT2006 (2006) 076 [arXiv:hep lat/0610053]; A. Sternbeck, PhD thesis [arXiv:hep lat/0609016]. 37. C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33 (1994) 477 [arXiv:hep-ph/9403224]. 38. R. Alkofer, C. S. Fischer and F. J. Llanes Estrada, arXiv:hep-ph/0607293
Collections