Publication:
Study of microstructured indium oxide by cathodoluminescence and XPS microscopy

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-04
Authors
Magdas, D.A.
Malestre, D.
Gregorati, Luca
Piqueras de Noriega, Javier
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press Ltd- Elsevier Science Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this work sintered thick microcrystalline films as well as micro and nanostructures of In(2)O(3) have been studied. The results obtained by XPS microscopy show that the boundary regions of the microcrystalline films present a higher amount of oxygen, as well as a different O (1s) core level XPS spectrum with respect to the grains. CL images recorded at room temperature show that the emission is preferentially associated with the grain boundaries and the main emission band appeared at 1.9 eV in the recorded CL spectra. Core level and valence band spectromicroscopy measurements of the indium oxide arrows grown at the surface of the sintered InN revealed the incorporation of nitrogen, coming from the starting material. In these structures the N (1s) core level splits into two components, showing a higher amount of nitrogen in the pyramid surface than in the columns of the structures which correlates with an increase of CL intensity. (C) 2008 Elsevier Ltd. All rights reserved.
Description
©2008 Elsevier Ltd. This work was supported by MEC (Project MAT2006-01259). 9th International Workshop on Beam Injection Assessment of Microstructure in Semiconductors (BIAMS 2008)(9. Toledo. 2008)
Unesco subjects
Keywords
Citation
[1] C. Granqvist, Appl. Phys. A 57 (1993) 19. [2] T. Takada, K. Suzuki, M. Nakane, Sensors Actuators B 13 14 (1993) 404. [3] R.W. Hewitt, N. Winograd, J. Appl. Phys. 51 (1980) 2620. [4] D.H. Zhang, Z.Q. Liu, C. Li, T. Tang, X.L. Liu, S. Han, B. Lei, C.W. Zhou, Nano Lett. 4 (2004) 1919. [5] S.Q. Li, Y.X. Liang, T.H. Wang, Appl. Phys. Lett. 88 (2006) 053107. [6] J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Adv. Mater. 16 (2004) 65. [7] D. Maestre, A. Cremades, J. Piqueras, J. Appl. Phys. 97 (2005) 044316. [8] A. Urbieta, P. Fernández, J. Piqueras, Appl. Phys. Lett. 85 (2004) 5968. [9] E. Nogales, B. Méndez, J. Piqueras, Appl. Phys. Lett. 86 (2005) 113112. [10] D.A. Magdas, A. Cremades, J. Piqueras, Appl. Phys. Lett. 88 (2006) 113107. [11] D.A. Magdas, A. Cremades, J. Piqueras, J. Appl. Phys. 100 (2006) 094320. [12] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in: J. Chastain (Ed.), Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Praire MN, 1992. [13] M.Z. Atashbar, B. Gong, H.T. Sun, W. Wlodarski, R. Lamb, Thin Solid Film 354 (1999) 222. [14] J. Xu, X. Wang, J. Shen, Sensors Actuators B 115 (2006) 642. [15] D. Maestre, A. Cremades, J. Piqueras, Semicond. Sci. Technol. 19 (2004) 1236. [16] N.C. Saha, H.G. Tomkins, J. Appl. Phys. 72 (1992) 3072. [17] I.J. Lee, C. Yu, H.-J. Shin, J.-Y. Kim, Y.P. Lee, T.-B. Hur, H.-K. Kim, Thin Solid Films 515 (2007) 4691
Collections