Publication:
Upper limit for gamma-ray emission above 140 GeV from the dwarf spheroidal galaxy Draco

Research Projects
Organizational Units
Journal Issue
Abstract
The nearby dwarf spheroidal galaxy Draco, with its high mass to light ratio, is one of the most auspicious targets for indirect dark matter (DM) searches. Annihilation of hypothetical DM particles can result in high-energy gamma-rays, e. g., from neutralino annihilation in the supersymmetric framework. A search for a possible DM signal originating from Draco was performed with the MAGIC telescope during 2007. Analysis of the data results in a flux upper limit (2 sigma) of 1.1 x 10(-11) photons cm(-2) s(-1) for photon energies above 140 GeV, assuming a pointlike source. A comparison with predictions from supersymmetric models is also given. While our results do not constrain the mSUGRA phase parameter space, a very high flux enhancement can be ruled out.
Description
© The American Astronomical Society. We would like to thank the IAC for the excellent working conditionsat the Observatory de los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN, and the Spanish CICYT is gratefully acknowledged. This work was also supported by ETH research grant TH 34/043, and the Polish MNiI grant 1P03D01028.
Keywords
Citation
Albert, J., et al. 2007, preprint (arXiv:0709.3719. Baixeras, C., et al. 2004, Nucl. Instrum. Method. A, 518, 188. Battaglia, M., et al. 2004, European Phys. J. C, 33, 273. Bergström, L., Hooper, D. 2006, Phys. Rev. D, 73, 063510. Breiman, L. 2001, Machine Learning, 45, 5. Chamseddine, A. H., Arnowitt, R., Nath, P. 1982, Phys. Rev. Lett., 49, 970. Colafrancesco, S., Profumo, S., Ullio, P. 2007, Phys. Rev. D, 75, 023513. Cortina, J., et al. 2005, in Proc. the 29th Int. Cosmic Ray Conf. ( Pune, India), 5, 359. Fomin, V. P., Stepanian, A., A., Lamb, R. C., Lewis, D. A., Punch, M., Weekes, T. C. 1994, Astropart. Phys., 2, 137. Gaug, M. 2005, in Towards a Network of Atmospheric Cherenkov Detectors, ed. B. Degrange, G. Fontaine (Palaiseau: Ecole Polytechnique). Gondolo, P., Edsjo, J., Bergstrom, L., Ullio, P., Baltz, E. A. 2000, preprint (astro-ph/0012234). Heck, D., Schatz, G., Thouw, T., Knapp, J., Capdevielle, J. N. 1998, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers (fZKA-6019; Karlsruhe: Forschungszentrum Karlsruhe). Hillas, A. M. 1985, in Proc. 19th Int. Cosmic Ray Conf. (La Jolla), 3, 445 Inoue, K., Kakuto, A., Komatsu, H., Takeshita, S. 1982a, Prog. Theor. Phys., 68, 927. Inoue, K., Kakuto, A., Komatsu, H., Takeshita, S. 1982b, Prog. Theor. Phys., 67, 1889 ———. 1984, Prog. Theor. Phys., 71, 413. Jungman, G., Kamionkowski, M. 1995, Phys. Rev. D, 51, 3121. Kazantzidis, S., Mayer, L., Mastropietro, C., Diemand, J., Stadel, J., Moore, B. 2004, ApJ, 608, 663. Majumdar, P., Moralejo, A., Bigongiari, C., Blanch, O., Sobczynska, D. 2005, in Proc. 29th Int. Cosmic Ray Conf. ( Pune, India), 5, 203. Mayer, L., Kazantzidis, S., Mastropietro, C., Wadsley, J. 2007, Nature, 445, 738. Persic, M., Salucci, P., Stel, F. 1996, MNRAS, 281, 27. Rolke, W. A., López, A. M., Conrad, J. 2005, Nucl. Instrum. Method. A, 551, 493. Sanchez-Conde, M. A., et al. 2007, Phys. Rev. D, 76, 123509. Spergel, D. N., et al. 2007, ApJS, 170, 377. Stark, L. S., Häfliger, P., Biland, A., Pauss, F. 2005, J. High Energy Phys., 8, 59. Strigari, L. E., Koushiappas, S. M., Bullock, J. S., Kaplinghat, M. 2007, Phys. Rev. D, 75, 083526. Tegmark, M., et al. 2006, Phys. Rev. D, 74, 123507. Tescaro, D., et al. 2007, in Proc. 30th Int. Cosmic Ray Conf. (Merida, Mexico), in press.
Collections