Publication:
Prediseño de un módulo de almacenamiento térmico para plantas termosolares con generación directa de vapor

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2011-09
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
El futuro de las plantas termosolares con generación directa de vapor (GDV) pasa por desarrollar conceptos innovadores de almacenamiento térmico. Para este tipo de plantas, cuyo fluido caloportador (HTF) intercambia calor latente, se requiere el uso de materiales de cambio de fase para almacenamiento de energía. Estos materiales deben adecuarse bien a las condiciones de trabajo del HTF (T ˜ 296º C - 316º C; P ˜ 80bar - 100bar) además de presentar buen comportamiento, desde el punto de vista de la transferencia de calor y del almacenamiento térmico, en dichas condiciones. Así mismo, estos materiales han de ser seguros, de bajo coste, y también ser capaces de mantener la reversibilidad tras numerosos ciclos de carga y descarga térmica. El objetivo de este trabajo ha sido el diseño conceptual de un módulo de almacenamiento térmico innovador de cambio de fase para una central termosolar GDV. Para ello nos hemos basado en el estudio teórico de los flujos de transferencia de calor y las pérdidas térmicas correspondientes en cond iciones de régimen estacionario. El módulo se ha diseñado para una potencia de 100kW y un tiempo de descarga de 3 horas. Para llevar a cabo este prediseño, ha sido necesaria una exhaustiva revisión bibliográfica sobre sistemas de almacenamiento térmico de cambio de fase, patentes y modelos de utilidad publicados en los últimos tiempos en las oficinas estadounidense (US), europea (EP), y en la organización mundial de la propiedad intelectual (WO), así como la consulta de catálogos comerciales de intercambiadores de calor. Este estudio ha dado como resultado la presentación de la Patente Nacional: MÓDULO DE ALMACENAMIENTO TÉRMICO BASADO EN CALOR LATENTE CON ALTAS TASAS DE TRANSFERENCIA DE CALOR (201131378).
The future of solar power plants with direct steam eneration depends on the development of innovative thermal storage concepts. For these plants, in which heat transfer fluid (HTF) exchanges latent heat the use of phase change materials (PCMs) for energy storage is required. The PCM must be suitable for the HTF working conditions (T ˜ 220º C - 330º C; P ˜ 20bar - 130bar) and present good performance from the point of view of both heat transfer and thermal storage, as well as being safe, not very expensive and stands for long term thermal cycling. The aim of this work has been the conceptual design of a latent heat thermal storage module for being use in DSG solar power plants. The design has been based on the theoretical study of heat transfer rates and its associate thermal losses in steady state conditions. The storage module has been designed for 100kW power and 3 hours discharging time. For accomplishing this design a thorough review of published papers, previous projects on latent heat thermal storage systems, patents and utility models of the U.S. patent office (U.S.), European Patent Office (EP), the World Organization of Intellectual Property (WO), and commercial catalogs of heat exchangers has been carried out. The result of this study has been the elaboration of the national patent : MÓDULO DE ALMACENAMIENTO TÉRMICO BASADO EN CALOR LATENTE CON ALTAS TASAS DE TRANSFERENCIA DE CALOR (201131378).
Description
Keywords
Citation
1. Zarza, E., Curso sobre sistemas de concentración. La Generación Directa de Vapor (GDV) con colectores cilindroparabólicos. Vol. 1. 2009: Cie mat. Unidad de Energía y Medioambiente. 2. Libby, C., Program on Technology Innovation: Evaluation of Solar Thermal Energy Storage Systems, 2009, EPRI: Palo Alto, CA. 3. Bauer T., L.D., Steinmann W.D., Kröner U., Tame R., Screening of phase change materials for process heat applications in the temperature range 120 to 250°C, in Eurosun2008. 4. Bauer T., L.D., Steinmann W.D., Tame R., Overview of PCMs for concentrated solar power in the temperature range 200 to 350ºC. Advances in Science and Technology, 2010. 74: p. 272-277. 5. Steinmann, W.D., D. Laing, and R. Tamme, Latent heat storage systems for solar thermal power plants and process heat applications. Journal of Solar Energy Engineering-Transactions of the Asme. 132(2). 6. Nomura, T., N. Okinaka, and T. Akiyama, Technology of Latent Heat Storage for High Temperature Application: A Review. ISIJ International, 2010. 50(9): p. 1229-1239. 7. Kenisarin, M.M., High-temperature phase change materials for thermal energy storage. Renewable & Sustainable Energy Reviews. 14(3): p. 955-970. 8. Kamimoto M., T.T., Tani T., Horigome T., Investigation of nitrate salts for solar latent heat storage. Solar Energy, 1980. 9. Birchenall C.E., R.A.L., Heat storage in eutectic alloys. ASMMSA, 1980. 10. Janz G. J., A.C.B., Downey J. R., Tomkins R. P. T., Physical properties data compilations relevant to energy storage. Molten salt. Eutectic data1978: NSRDS. 11. Project DISTOR: D2.1 Manufacturing and characterization of EG-PCM composites 2005. 12. Laing, D., et al., Thermal energy storage for direct steam generation. Solar Energy. 85(4): p. 627-633. 13. Laing, D., et al., Development of a thermal energy storage system for parabolic trough power plants with direct steam generation. Journal of Solar Energy Engineering-Transactions of the Asme. 132(2). 14. Laing D., B.T., Steinmann W.-D., Lehmann D. , Advanced high temperature latent heat storage system – Design and test results in The 11th International Conference on Thermal Energy Storage – Effstock 2009: Stockholm, Sweden. 15. Hoshi, A., et al., Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Solar Energy, 2005. 79(3): p. 332-339. 16. Hitec Heat Transfer Salt, Coastal Chemicals Co. L. L. C. 17. Bayon, R.R., E; Valenzuela, L; Zarza, E; Leon, J, Analysis of the experimental behaviour of a 100 kW(th) latent heat storage system for direct steam generation in solar thermal power plants. Applied Thermal Engineering, 2010. 30(17-18): p. 2643-2651. 18. T., B., et al., Sodium nitrate for high temperature latent heat storage. 19. Webb, R.L., Principles of enhanced heat transfer1994: Joh Wiley and Sons, INC. 20. Khodadadi, J.M. and S.F. Hosseinizadeh, Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International Communications in Heat and Mass Transfer, 2007. 34(5): p. 534-543. 21. Jegadheeswaran, S. and S.D. Pohekar, Performance enhancement in latent heat thermal storage system: A review. Renewable & Sustainable Energy Reviews, 2009. 13(9): p. 2225-2244. 22. S. Pincemin, X.P., R. Olives, M. Christ and O. Oettinger, Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant. Journal of Solar Energy Engineering 2008. 130(1). 46 23. Steinmann, W.D. and R. Tamme, Latent heat storage for solar steam systems. Journal of Solar Energy Engineering-Transactions of the Asme, 2008. 130(1). 24. Zhao, C.Y. and Z.G. Wu, Heat transfer enhancement of high temperature therm al energy storage using metal foams and expanded graphite. Solar Energy Materials and Solar Cells. 95(2): p. 636-643. 25. Project DISTOR: D3.4 Report on 10kW module testing 2007. 26. Rojas, E., Curso sobre sistemas de concentración. La Generación Directa de Vapor (GDV) con colectores cilindroparabólicos. Vol. 1. 2009: Ciemat. Unidad de Energía y Medioambiente. 27. Project DISTOR: D2.5 Report on material & geometry definition of macroencapsulation., 2005. 28. Oztekin, S.N.a.A. 2010; Available from: http://www1.eere.energy.gov/solar/pdfs/csp_prm2010_lehigh.pdf. 29. Mathur, A. 2010; Available from: http://www1.eere.energy.gov/solar/pdfs/csp_prm2010_terrafore.pdf. 30. International Research Initiative EON. 2010; Available from: http://www.eon.com/en/downloads/100924_Gewinnerprojekte_2010_4.pdf. 31. Saravanan, K., An experimental investigation of heat transfer coefficients for spiral plate heat exchanger Modern Applied Science, 2008. 2(5). 32. Banaszek, J., et al., Numerical analysis of the paraffin wax -air spiral thermal energy storage unit. Applied Thermal Engineering, 2000. 20(4): p. 323-354. 33. Domanski R., B.J., Rebow M., Complex analysis of spiral PCM thermal energy storage unit performance, in 6th Workshops, E.I. IEA, Editor 2000. 34. Alfa Laval. Available from: http://local.alfalaval.com/en-nl/about-us/news/Pages/HighPressureSpiral.aspx. 35. Milton, P.E., Handbook of evaporation technology1986: Noyes Publications. 36. Project DISTOR: D1.1 Report on design specifications for DSG Storage Systems, 2005. 37. Wang, S.M., A. Faghri, and T.L. Bergman, Numerical modeling of alternate melting and solidification. Numerical Heat Transfer Part B-Fundamentals. 58(6): p. 393-418. 38. Glicksman, M.E., Principles of solidification. An introduction to modern casting and crystal growth concepts, ed. Springer2011. 39. AK Steel. Available from: http://www.aksteel.com/pdf/markets_products/stainless/austenitic/316_316L_Data_Bullet in.pdf. 40. Rojas, E. and R. Bayón, Towards standarizations of testing storage prototypes in SolarPaces2011: Granada. 41. Wu, D., Geometric calculations for the spiral heat exchanger. Chemical Engineering & Technology, 2003. 26(5): p. 592-598. 42. Morisson, V., et al., Thermal energy storage systems for electricity production using solar energy direct steam generation technology. Chemical Engineering and Processing, 2008. 47(3): p. 499-507. 43. Rohsenow, W.M., J.P. Hartnett, and E.N. Ganic, Handbook of heat transfer fundamenals, ed. McGraw-Hill1998. 44. Tablas de emisividad. Available from: http://es.scribd.com/doc/44592848/Tablas-de-Emisividad. 45. Costa Novella, E., Ingenieria Química.Transmisión del calor, ed. Alhambra. Vol. 4. . 1986. 46. Engineering Data Book III. Chapter 7: Condensation on External Superfaces, ed. I. Wolverine Tube2007. 47. Tablas de propiedades del vapor saturado. Available from: http://twt.mpei.ac.ru/ochkov/WSPHB/engindex.html. 48. Engineering Data Book III. Chapter 10: Boiling Heat Transfer inside Plane Tubes, ed. I. Wolverine2007.