Universidad Complutense de Madrid
E-Prints Complutense

Smooth approximation of Lipschitz functions on Finsler manifolds



Último año

Garrido, M. Isabel y Jaramillo Aguado, Jesús Ángel y Rangel, Yenny C. (2013) Smooth approximation of Lipschitz functions on Finsler manifolds. Journal of function spaces and applications . ISSN 0972-6802

[img] PDF

URL Oficial: http://www.hindawi.com/journals/jfsa/2013/164571/abs/

URLTipo de URL


We study the smooth approximation of Lipschitz functions on Finsler manifolds, keeping control on the corresponding Lipschitz constants. We prove that, given a Lipschitz function f : M -> R defined on a connected, second countable Finsler manifold M, for each positive continuous function epsilon : M -> (0, infinity) and each r > 0, there exists a C-1-smooth Lipschitz function g : M -> R such that vertical bar f(x) - g(x)vertical bar <= epsilon(x), for every x is an element of M, and Lip(g) <= Lip(f) + r. As a consequence, we derive a completeness criterium in the class of what we call quasi-reversible Finsler manifolds. Finally, considering the normed algebra C-b(1)(M) of all C-1 functions with bounded derivative on a complete quasi-reversible Finsler manifold M, we obtain a characterization of algebra isomorphisms T : C-b(1)(N) -> C-b(1)(M) as composition operators. From this we obtain a variant of Myers-Nakai Theorem in the context of complete reversible Finsler manifolds.

Tipo de documento:Artículo
Palabras clave:Riemannian-manifolds; isometries
Materias:Ciencias > Matemáticas > Geometría diferencial
Código ID:23180
Depositado:15 Oct 2013 10:18
Última Modificación:12 Dic 2018 15:12

Descargas en el último año

Sólo personal del repositorio: página de control del artículo