Publication:
Cathodoluminescence of defects in sintered tin oxide

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-03
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Cathodoluminescence (CL) in the scanning electron microscope (SEM) has been used to investigate the luminescence mechanisms in tin oxide. Sintered material prepared from high purity powder has been found to show a strong dependence of the CL emission on the thermal treatments applied during sample preparation. SEM images show the presence of nano and microcrystalline grains. The correlation of the grain size and morphology with the optical emission is analyzed by CL microscopy and spectroscopy. The main emission bands appear centered at about 2.58, 2.25, and 1.94 eV depending on the sintering treatment. CL images reveal that the 2.25 and the 2.58 eV bands are associated at specific crystal faces. The evolution of the luminescence bands with mechanical milling shows a complex evolution of the 1.94 and 2.58 eV emissions which is explained by formation and recovery of defects during milling.
Description
© 2004 American Institute of Physics. This work has been supported by MCYT (Project No. MAT 2000-2119). D. M. acknowledges a grant from MCYT
Unesco subjects
Keywords
Citation
1 G. Martinelli, M. C. Carotta, E. Traversa, and G. Ghiotti, MRS Bull. 24, 30 (1999). 2 C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sens. Actuators B 3, 147 (1991). 3 H. J. Van Daal, Solid State Commun. 6, 5 (1968). 4 J. P. Fillard and M. de Murcia, Phys. Status Solidi A 30, 279 (1975). 5 S. S. Chang and D. K. Park, Mater. Sci. Eng., B 95, 55 (2002). 6 J. M. Themlin, R. Sporken, J. Darville, R. Caudano, and J. M. Gilles, Phys. Rev. B 42, 11914 (1990). 7 D. F. Crabtree, J. Phys. D 7, L22 (1974). 8 D. F. Crabtree, J. Phys. D 7, L17 (1974). 9 E. De Frésart, J. Darville, and J. M. Gilles, Surf. Sci. 126, 518 (1983). 10 D. F. Cox, T. B. Fryberger, and S. Semancik, Phys. Rev. B 38, 2072 (1988). 11 A. Urbieta, P. Fernández, Ch. Hardalov, J. Piqueras, and T. Sekiguchi, Mater. Sci. Eng., B 91–92, 345 (2002). 12P. R. Bueno, E. R. Leite, M. M. Oliveira, M. O. Orlandi, and E. Longo, Appl. Phys. Lett. 79, 48 (2001). 13 R. Radoi, P. Fernández, J. Piqueras, M. Wiggins, and J. Solís, Nanotechnology 14, 794 (2003). 14 C. C. Koch, Nanostruct. Mater. 2, 109 (1993). 15 C. Díaz-Guerra, A. Montone, J. Piqueras, and F. Cardellini, Semicond. Sci. Technol. 17, 77 (2002). 16 E. Nogales, A. Montone, F. Cardellini, B. Méndez, and J. Piqueras, Semicond. Sci. Technol. 17, 1267 (2002).
Collections