Publication:
Some remarks on Lagrangian and Poisson reduction for field theories

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-10
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Given a Hamiltonian system on a fiber bundle, the Poisson covariant formulation of the Hamilton equations is described. When the fiber bundle is a G-principal bundle and the Hamiltonian density is G-invariant, the reduction of this formulation is studied thus obtaining the analog of the Lie-Poisson reduction for field theories. The relation of this reduction with the Lagrangian reduction and the Lagrangian and Poisson reduction for electromagnetism are also analyzed.
Description
Keywords
Citation
E. Binz, J.Sniatycki, H. Fischer, Geometry of classical fields, in: North-Holland Mathematics Studies, vol.154, North-Holland, Amsterdam, 1988. M. Castrillón López, P.L. García Pérez, T.S. Ratiu, Euler–Poincaré reduction on principal bundles, Lett. Math. Phys. 58 (2001) 167–180. M. Castrillón López, J.M.Masqué, The geometry of the bundle of connections, Math. Z. 236 (2001) 797–811. M. Castrillón López, T.S. Ratiu, S. Shkoller, Reduction in principal fiber bundles:covariant Euler–Poincaré equations, Proc. Am. Math. Soc. 128 (2000) 2155–2164. H. Cendra, D.D. Holm, M.J.W. Hoyle, J.E. Marsden, The Maxwell–Vlasov equations in Euler–Poincaré form, J. Math. Phys. 39 (1998) 3138–3157. H. Cendra, J.E. Marsden, T.S. Ratiu, Lagrangian reduction by stages, in: Memoirs, vol. 152, American Mathematical Society, Providence, RI, 2001. A. Echeverria-Enríquez, M.C. Muñoz-Lecanda, N. Román-Roy, Geometry of multisymplectic Hamiltonian first-order field theories, J. Math. Phys. 41 (2000) 7402–7444. A. Fernández, P.L. García, C. Rodrigo, Lagrangian reduction and constrained variational calculus, in: Proceedings of the IX Fall Workshop on Geometry and Physics, vol. 4, RSME, 2000, pp. 53–64. M. Forger, H. Römer, A Poisson bracket on multisymplectic phase space, Rep. Math. Phys. 48 (2001) 211–218. P.L. García, The Poincaré–Cartan invariant in the calculus of variations,in:Proceedings of the Symposia on Mathematica, vol. XIV, Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973, No. 53 #10037, Academic Press, London, 1974, pp. 219–246. P.L. García, Gauge algebras, curvature and symplectic structure, J. Diff. Geom. 12 (1977) 209–227. G. Giachetta, L. Mangiarotti, G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, Singapore, 1997. M. Gotay, J. Isenberg, J.E. Marsden, R. Montgomery, Momentum Maps and the Hamiltonian Structure of Classical Relativistic Field Theories, 1985. http://www.cds.caltech.edu/∼marsden. H. Goldschmidt, S. Sternberg, The Hamilton–Cartan formalism in the calculus of variations, Ann. Inst. Fourier (Grenoble) 23 (1973) 203–267. C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations.I. The local case, J. Diff. Geom. 25 (1987) 23–53. D.D. Holm, B.A. Kupershmidt, The analogy between spin glasses and Yang–Mills fluids, J.Math. Phys. 29(1988) 21–30. D.D. Holm, J.E. Marsden, T.S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137 (1998) 1–81. I.V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys. 41 (1998) 49–90. J.E. Marsden, R. Montgomery, P.J. Morrison,W.B. Thompson, Covariant Poisson brackets for classical fields, Ann. Phys. 169 (1986) 29–48. J.E. Marsden, R. Montgomery, T.S. Ratiu, Reduction, symmetry and phases in mechanics, in: Memoirs of the AMS, vol. 436, American Mathematical Society, Providence, RI, 1990. J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol. 17, 2nd ed., 1994, Springer, Berlin, 1999. J.E. Marsden, J. Scheurle, The reduced Euler–Lagrange equations, Fields Inst. Commun. 1 (1993) 139–164. J.E. Marsden, S. Shkoller, Multisymplectic geometry, covariant Hamiltonians and water waves, Math.Proc.Camb. Philos. Soc. 125 (1999) 553–575. J.E. Marsden, A.Weinstein, The Hamiltonian structure of the Maxwell–Vlasov equations, PhysicaD4 (1982) 394–406. J.E. Marsden, A.Weinstein, Coadjoint orbits, vortices and Clebsch variables for incompressible fluids,Physica D 7 (1983) 305–323. J.E. Marsden, A. Weinstein, Comments on the history, theory, and applications of symplectic reduction, in: N. Landsman, M. Pflaum, M. Schlichenmaier (Eds.), Quantization of Singular Symplectic Quotients, Birkhäuser, Boston, 2001, pp. 1–20. G. Sardanashvily, Generalized Hamiltonian formalism for field theory, World Scientific, River Edge, NJ, 1995. D.J. Saunders, The geometry of jet bundles, in: London Mathematical Society Lecture Notes Series, vol.142,Cambridge University Press, Cambridge, 1989. J. Sniatycki, Regularity of constraints and reduction in the Minkowski space Yang–Mills–Dirac theory, Ann. Inst. H. Poincaré Phys. Théoret. 70 (1999) 277–293.
Collections