Publication:
Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-09
Authors
Cotanch, Stephen R
Szczepaniak, Adam P
Swanson, Eric S
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate Bardeen-Cooper- Schrieffer, random-phase approximation diagonalizations. This relativistic formulation includes both S and D waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the p-r mass difference. A reasonable description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the p mass, is obtained. Similar comparisons with Tamm-Dancoff diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons, indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The hb mass is predicted to be around 9400 MeV, consistent with other theoretical expectations and above the unconfirmed 9300 MeV candidate. Finally, for comparison with lattice results, the J reliability parameter is also evaluated.
Description
© 2004 The American Physical Society. F. Llanes and S. Cotanch thank P. Bicudo and E. Ribeiro for useful comments. S. Cotanch also acknowledges T. Hare for effective advice. E. Swanson is grateful to R. Woloshyn for a helpful observation. This work was supported by Spanish Grants No. FPA 2000-0956 and No. BFM 2002-01003 (F.L-E.), and the Department of Energy Grants No. DEFG02- 97ER41048 (S.C.), No. DE-FG02 87ER40365 (A.S.), No. DE-FG02-00ER41135, and No. DE-AC05-84ER40150 (E.S.).
Unesco subjects
Keywords
Citation
[1] See, for example, D. J. Griffiths, Introduction to Elementary Particles (Wiley, New York, 1987). [2] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985). [3] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986). [4] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 65, 025012 (2002); 62, 094027 (2000). [5] R. Delbourgo and M. D. Scadron, J. Phys. G 5, 1621 (1979). [6] A. Bender, C. D. Roberts and L. v. Smekal, Phys. Lett. B 380, 7 (1996). [7] P. Maris, C. D. Roberts, and P. C. Tandy, Phys. Lett. B 420, 267 (1998). [8] See recent review and references therein by P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003). [9] E. S. Swanson, in Proceedings of the Workshop on the Physics of Excited Nucleons, edited by S. A. Dytman and E. S. Swanson (World Scientific, Hong Kong, 2003), p. 157. [10] J. R. Finger and J. E. Mandula, Nucl. Phys. B199, 168 (1982); S. L. Adler and A. C. Davis, ibid. B244, 469 (1984); A. Le Yaouanc, L. Oliver, S. Ono, O. Pene, and J. C. Raynal, Phys. Rev. D 31, 137 (1985). [11] A. P. Szczepaniak, E. S. Swanson, C. R. Ji, and S. R. Cotanch, Phys. Rev. Lett. 76, 2011 (1996). [12] F. J. Llanes-Estrada, S. R. Cotanch, P. Bicudo, E. Ribeiro, and A. Szczepaniak, Nucl. Phys. A710, 45 (2002). [13] A. P. Szczepaniak and E. S. Swanson, Phys. Lett. B 577, 61 (2003). [14] E. S. Swanson and A. P. Szczepaniak, Phys. Rev. D 59, 014035 (1999). [15] F. J. Llanes-Estrada and S. R. Cotanch, Phys. Lett. B 504, 15 (2001). [16] F. J. Llanes-Estrada and S. R. Cotanch, Phys. Rev. Lett. 84, 1102 (2000). [17] F. J. Llanes-Estrada and S. R. Cotanch, Nucl. Phys. A697, 303 (2002). [18] N. Ligterink and E. S. Swanson, Phys. Rev. C 69, 025204 (2004). [19] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 55, 1578 (1997). [20] D. G. Robertson, E. S. Swanson, A. P. Szczepaniak, C. R. Ji, and S. R. Cotanch, Phys. Rev. D 59, 074019 (1999). [21] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. Lett. 87, 072001 (2001). [22] A. P. Szczepaniak and P. Krupinski, Phys. Rev. D 66, 096006 (2002). [23] J. E. Villate et al., Phys. Rev. D 47, 1145 (1993); P. Bicudo et al., ibid. 45, 1673 (1992). [24] P. Bicudo and J. Ribeiro, Z. Phys. C 38, 454 (1988); Phys. Rev. D 42, 1611 (1990). [25] Belle Collaboration, S.-K. Choi et al., Phys. Rev. Lett. 89, 142001 (2002). [26] R. Alkofer and P. A. Amundsen, Nucl. Phys. B306, 305 (1988); J.-F. Lagaë, Phys. Rev. D 45, 317 (1992). [27] K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002). [28] A. Pineda and F. J. Yndurain, Phys. Rev. D 61, 077505 (2000); C. T.H. Davies et al., Phys. Rev. D 58, 054505 (1998). [29] B. A. Kniehl et al., hep-ph/0312086. [30] M. Creutz, hep-ph/0312225. [31] P. Lacock and C. Michael, Phys. Rev. D 52, 5213 (1995). [32] E. S. Swanson, Phys. Lett. B 582, 167 (2004). [33] F. J. Llanes-Estrada (unpublished).
Collections