Publication:
Gaussian Schell-model beams propagating through polarization gratings

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-06
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Optical Society of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The effects of polarization gratings on partially coherent beams are investigated by studying a Gaussian Schell-model beam impinging on a linear polarizer whose transmission axis varies periodically along one transverse direction. Analytical expressions for the beam polarization-coherence matrix after the grating are obtained. In particular, the evolution of the degree of polarization upon propagation is analyzed. Different behaviors of the output beam, depending on the beam parameters and on the period of the grating, are exhibited. In particular, it is shown that, by suitably choosing the latter quantities, it is possible to obtain not only any desirable value of the degree of polarization of the output beam but also particular distributions of such. parameters across the transverse sections of the beam.
Description
© 2001 Optical Society of America. We thank Franco Gori for many helpful discussions during the preparation of this work. We acknowledge the project Azioni Integrate HI-1998-077 for support. One of the authors (G. Piquero) is grateful for support from the project PB97-295 and the program Becas Internacionales U.C.M/Flores Valles.
Keywords
Citation
1. F. Gori, “Measuring Stokes parameters by means of a polarization grating”, Opt. Lett. 24, 584–586 (1999). 2. C. G. Someda, “Far field of polarization gratings”, Opt. Lett. 24, 1657–1659 (1999). 3. P. Rochon, V. Drnoyan, and A. Natansohn, “Polarization holographic gratings in azopolymers for detecting and producing circularly polarized light”, in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap Between Theory, Developments, and Applications, G. A. Lampropoulos and R. A. Lessard, eds., Proc. SPIE 3491, 306–309 (2000). 4. J. Tervo and J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings”, Opt. Lett. 25, 785–786 (2000). 5. F. Gori, M. Santarsiero, R. Borghi, and G. Piquero, “Use of the van Cittert–Zernike theorem for partially polarized sources”, Opt. Lett. 25, 1291–1293 (2000). 6. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically”, Appl. Opt. 29, 2234–2239 (1990). 7. T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating surface emitting AlGaAs/GaAs quantum well semiconductor laser”, Appl. Phys. Lett. 60, 1921–1923 (1992). 8. P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel-Gauss beams”, J. Opt. Soc. Am. A 15, 3020–3027 (1998). 9. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams”, J. Opt. Soc. Am. A 15, 2705–2711 (1998). 10. J. M. Movilla, G. Piquero, R. Martínez-Herrero, and P. M. Mejías, “Parametric characterization of non-uniformly polarized beams”, Opt. Commun. 149, 230–234 (1998). 11. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995). 12. D. F. V. James, “Change of polarization of light beams on propagation in free space”, J. Opt. Soc. Am. A 11, 1641–1643 (1994). 13. S. R. Seshadri, “Partially coherent Gaussian Schell-model electromagnetic beams”, J. Opt. Soc. Am. A 16, 1373–1380 (1999). 14. F. Gori, “Matrix treatment for partially polarized, partially coherent beams”, Opt. Lett. 23, 241–243 (1998). 15. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix”, J. Eur. Opt. Soc. A Pure Appl. Opt. 7, 941–951 (1998). 16. F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “The irradiance of partially polarized beams in a scalar treatment”, Opt. Commun. 163, 159–163 (1999). 17. A. K. Jaiswal, G. P. Agrawal, and C. L. Mehta, “Coherence functions in the far field diffraction plane”, Nuovo Cimento B 15, 295–307 (1973). 18. D. F. V. James, “Polarization of light radiated by black-body sources”, Opt. Commun. 109, 209–214 (1994). 19. J. W. Goodman, Statistical Optics (Wiley, New York, 1985). 20. F. Gori, “Mode propagation of the field generated by Collett–Wolf sources”, Opt. Commun. 46, 149–154 (1983).
Collections