Publication:
Partially polarized Gaussian Schell-model beams

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-01
Authors
Santarsiero, Massimo
Gori, Franco
Borghi, Riccardo
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing Ltd.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We consider a class of beams that are both partially polarized and partially coherent from the spatial standpoint. They are characterized by a correlation matrix whose elements have the same form as the mutual intensity of a Gaussian Schell-model beam. We focus our attention on those beams that would appear identical to ordinary Gaussian Schell-model beams in a scalar treatment. After establishing some inequalities that limit the choice of the matrix parameters, we study the main effects of propagation. Starting from the source plane, in which the beam is assumed to be uniformly polarized, we find that in the course of propagation the degree of polarization generally becomes non-uniform across a typical section of the beam. Furthermore, we find that the intensity distribution at the output of an arbitrarily oriented linear polarizer is Gaussian shaped at the source plane whereas it can be quite different at other planes.
Description
© 2001 IOP Publishing Ltd. GP acknowledges support from the PB97-0295 project and from the programme ‘Becas Internacionales Universidad Complutense/Flores Valles’.
Keywords
Citation
[1] Mandel L and Wolf E. 1995 Optical Coherence and Quantum Optics. (Cambridge: Cambridge University Press). [2] Born M and Wolf E. 1999 Principles of Optics 7th edn (Cambridge: Cambridge University Press). [3] Friberg A T (ed.). 1993 Selected Papers on Coherence and Radiometry (SPIE Milestone Series 69) (Bellingham, A: SPIE). [4] Collett E and Wolf E 1978. Is complete coherence necessary for the generation of highly directional light beams? Opt. Lett. 2 27-9. [5] Gori F and Palma C 1978. Partially coherent sources which give rise to highly directional light beams. Opt. Commun. 27 185-8. [6] Foley J T and Zubairy M S 1978. The directionality of Gaussian Schell-model beams. Opt. Commun. 26 297-300. [7] Saleh B E A 1979. Intensity distribution due to a partially coherent field and the Collett - Wolf equivalence theorem in the Fresnel zone. Opt. Commun. 30 135-8. [8] Friberg A T and Sudol R J 1982. Propagation parameters of Gaussian Schell-model beams. Opt. Commun. 41 383-7. [9] Martínez-Herrero R and Mejías P M 1982. Relation among planar sources that generate the same radiant intensity at the output of a general optical system. J. Opt. Soc. Am. 72 765-9. [10] Gamliel 1986. Radiation efficiency of planar Gaussian Schell-model sources. Opt. Commun. 60 333 [11] Zahid M and Zubairy M S 1987. Second-order coherence properties of beams generated by a generalized Schell-model source, Opt. Commun. 64 496. [12] He, Turunen J and Friberg A T 1988. Propagation and imaging experiments with Gaussian Schell-model beams. Opt. Commun. 67 245. [13] Simon R and Tamir T 1989. Nonspecular phenomena in partly coherent beams reflected by multilayered structures. J. Opt. Soc. Am. A 6 18. [14] Nugent K A 1990. A generalization of Schell's theorem. Opt. Commun. 79 267. [15] Serna J, Martínez-Herrero R and Mejías P M 1992. Beam quality dependence on the coherence length of Gaussian Schell-model fields propagating through ABCD optical systems. J. Mod. Opt. 39 625. [16] Cincotti G, De Santis P, Guattari G and Palma C 1994. Propagation of partially coherent beams in a periodic sequence of lenses and Gaussian apertures. J. Eur. Opt. Soc. A 3 561. [17] Yoshimura H, Takas N and Asakura T 1994. Equiambiguity-function ellipse of Gaussian Schell-model beams. J. Opt. Soc. Am. A 11 1136. [18] Castañeda R and Medina F F 1997. Schell-model beams and interference fields. Optik 105 88-92. [19] Gori F 1980. Collett - Wolf sources and multimode laser. Opt. Commun. 34 301-5. [20] Starikov A and Wolf E 1982. Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields. J. Opt. Soc. Am. 72 923-8. [21] Gase R 1991. The multimode laser radiation as a Gaussian Schell-model beam. J. Mod. Opt. 38 1107-15. [22] Lüet B, Zhang B, Cai B and Yang C 1993. A simple method for estimating the number of effectively oscillating modes and weighting factors of mixed-mode laser beams behaving like Gaussian Schell-model beams. Opt. Commun. 101, 49. [23] Wolf E 1982. New theory of partial coherence in the space-frequency domain. Part I: Spectra and cross-spectra of steady-state sources. J. Opt. Soc. Am. 72 343-51. [24] Simon R and Mukunda N 1993. Twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A 10, 95. [25] Simon R, Sundar K and Mukunda N 1993. Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum. J. Opt. Soc. Am. A 10 2008 [26] Sundar K, Simon R and Mukunda N 1993. Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics. J. Opt. Soc. Am. A 10 2017. [27] Ambrosini D, Bagini V, Gori F and Santarsiero M 1994. Twisted Gaussian Schell-model beams: a superposition model. J. Mod. Opt. 41 1391-9. [28] Friberg A T, Tervonen E and Turunen J 1994. Focusing of twisted Gaussian Schell-model beams. Opt. Commun. 106 127-32. [29] Friberg A T, Tervonen E and Turunen J 1994. Interpretation and experimental demonstration of twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A 11 1818. [30] Gori F, Santarsiero M, Borghi R and Vicalvi S 1998. Partially coherent sources with helicoidal modes. J. Mod. Opt. 45 539-54. [31] Mascello A, Perrone M R and Palma C 1997. Coherence evolution of laser beams in cavities with variable-reflectivity mirrors. J. Opt. Soc. Am. A 14 1890. [32] Garnier J, Gouédard C and Videau L 2000. Propagation of a partially coherent beam under the interaction of small and large scales. Opt. Commun. 176 281-98. [33] Tidwell S C, Ford D H and Kimura W D 1990. Generating radially polarized beams interferometrically. Appl. Opt. 29 2334-9. [34] Erdogan T, King O, Wicks G W, Hall D G, Anderson E and Rooks M J 1992. Circularly symmetric operation of a concentric-circle-grating surface emitting AlGaAs/GaAs quantum well semiconductor laser. Appl. Phys. Lett. 60 1921-3. [35] Higgins T V 1992. Spiral waveplate design produces radially polarized laser light. Laser Focus World 28 18-20. [36] Tidwell S C, Kim G H and Kimura W D 1993. Efficient radially polarized laser beam generation with double interferometer. Appl. Opt. 32 5223-8. [37] James D F V 1994. Change of polarization of light beam on propagation in free-space. J. Opt. Soc. Am. A 11 1641. [38] Jordan R H and Hall D G 1994. Free-space azimuthal paraxial wave equation: the azimuthal Bessel - Gauss solution. Opt. Lett. 19 427-9. [39] Hall D G 1996. Vector-beam solution of Maxwell's wave equation. Opt. Lett. 21 9-12. [40] Greene P L and Hall D G 1998. Properties and diffraction of vector Bessel - Gauss beams. J. Opt. Soc. Am. A 15 3020-7. [41] Olson C, Greene P L, Wicks G W, Hall D G and Rishton S 1998. High-order azimuthal spatial modes of concentric-circle-grating surface-emitting semiconductor lasers. Appl. Phys. Lett. 72 1284-6. [42] Martínez-Herrero R, Mejías P M and Movilla J M 1997. Spatial characterization of partially polarized beams. Opt. Lett. 22 206-8. [43] Movilla J M, Piquero G, Martínez-Herrero R and Mejías P M 1998. Parametric characterization of non-uniformly polarized beams. Opt. Commun. 149 230-4. [44] Piquero G, Movilla J M, Mejías P M and Martínez-Herrero R 1999. Degree of polarization of non-uniformly partially polarized beams: a proposal. Opt. Quantum Electron. 31 223-5. [45] Piquero G, Movilla J M, Martínez-Herrero R and Mejías P M 1999. Beam quality of partially polarized beams propagating through lens-like birefringent elements. J. Opt. Soc. Am. A 16 2666-8. [46] Tovar A A 1998. Production and propagation of cylindrically polarized Laguerre Gaussian laser beams. J. Opt. Soc. Am. A 15 2705. [47] Nikolova L, Ivanov M, Todorov T and Stoyanov S 1993. Spectrophotopolarimeter: a simplified version for real-time measurement at selected wavelengths. Bulgarian J. Phys. 20 46-54. [48] Rochon P, Drnoyan V and Natansohn A 2000. Polarization holographic gratings in azopolymers for detecting and producing circularly polarized light. Proc. 1998 Int. Conf. on Applications of Photonic Technology III: Closing the Gap between Theory, Developments, and Applications (SPIE 3491), ed. G A Lampropoulos and R A Lessard. (Bellingham, WA: SPIE). [49] Gori F 1999. Measuring Stokes parameters by means of a polarization grating. Opt. Lett. 24 584. [50] Someda C G 2000. Far field of polarization gratings. Opt. Lett. 25 1657. [51] Kawano K, Ishii T, Minabe J, Niitsu T, Nishikata Y and Baba K 1999. Holographic recording and retrieval of polarized light by use of polyester containing cyanoazobenzene units in the side chain. Opt. Lett. 24 1269-71. [52] Ferrari J A, Frins E M and Dultz W 1998, Complex self-coherence function determination using geometric phase techniques. Opt. Commun. 152 252. [53] Seshadri S R 1999. Partially coherent Gaussian Schell-model electromagnetic beam. J. Opt. Soc. Am. A 16 1373-80. [54] Gori F 1998. Matrix treatment for partially polarized, partially coherent beams. Opt. Lett. 23 241. [55] Gori F, Santarsiero M, Vicalvi S, Borghi R and Guattari G 1998. Beam coherence-polarization matrix. J. Eur. Opt. Soc. A 7 941-51. [56] Gori F, Santarsiero M, Borghi R and Guattari G 1999. The irradiance of partially polarized beams in a scalar treatment. Opt. Commun. 163 159-63. [57] Wolf E 1959. Coherence properties of partially polarized electromagnetic radiation. Nuovo Cimento 13 1165-81. [58] Azzam R M A and Bashara N M 1986. Ellipsometry and Polarized Light (Amsterdam: North-Holland). [59] Brosseau C 1998. Fundamentals of Polarized Light (New York: Wiley). [60] Gori F 1983. Mode propagation of the field generated by Collett - Wolf sources. Opt. Commun. 46 149-54.
Collections