Publication:
α-Bi_2O_3 microcrystals and microrods: thermal synthesis, structural and luminescence properties

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-01-25
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
α-Bi_2O-3 microcrystals and microrods with pyramidal tips have been grown by a vapour–solid method using pure Bi as starting material. The morphology of the obtained microstructures depends on the annealing temperature and time. At 650 °C and for short annealing times, microcrystals with well defined facets and sizes of tens of microns, as well as clusters of microcrystals, are formed. Microrods were grown at 800 °C, mainly from nucleation sites in the clusters of microcrystals, and reach lengths of hundreds of microns. Micro-Raman spectroscopy measurements reveal the homogeneity of the obtained microstructures regarding the crystalline α-phase. The luminescence properties of the microrods have been investigated by cathodoluminescence in the scanning electron microscope and by photoluminescence in a confocal microscope. The obtained results were correlated with X-ray photoelectron spectroscopy measurements.
Description
© 2012 Elsevier B.V. This work has been supported by MICINN through projects MAT2009-07882 and CSD2009-0013. The authors are grateful to E. Magnano, S. Nappini and M. Yablonskikh at the Sincrotron Trieste for useful advices on XPS measurements.
Unesco subjects
Keywords
Citation
[1] A. Cabot, A. Marsal, J. Arbiol, J.R. Morante, Sens. Actuators B 99 (2004) 74. [2] A. Hameed, T. Montini, V. Gombac, P. Fornasiero, J. Am. Chem. Soc. 130 (2008) 9658. [3] H.A. Harwig, Z. Anor, Allg. Chem. 444 (1978) 151. [4] H.A. Harwig, J.W. Weenk, Z. Anor, Allg. Chem. 444 (1978) 167. [5] L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Surf. Sci. 480 (2002) 507. [6] L. Kumari, J. Lin, Y. Ma, J. Phys.: Condens. Matter 19 (2007) 406204. [7] H.W. Kim, J.W. Lee, C. Lee, J. Korean Phys. Soc. 49 (2006) 632. [8] X.P. Shen, S.K. Wu, H. Zhao, Q. Liu, Physica E 39 (2007) 133. [9] S. Park, H. Kim, C. Lee, D.H. Lee, S.S. Hong, J. Korean Phys. Soc. 53 (2008) 1965. [10] X. Gou, R. Li, G. Wang, Z. Chen, D. Wexler, Nanotechnology 20 (2009) 495501. [11] B. Ling, X.W. Sun, J.L. Zhao, Y.Q. Shen, Z.L. Dong, L.D. Sun, S.F. Li, S. Zhang, J. Nanosci. Nanotechnol. 10 (2010) 8322. [12] C. Jin, H. Kim, K. Baek, H.W. Kim, C. Lee, J. Korean Phys. Soc. 57 (2010) 1634. [13] W.P. Doyle, J. Phys. Chem. Solids 4 (1958) 144. [14] H. Gobrecht, S. Seeck, H.E. Bergt, A. Märtens, K. Kossmann, Phys. Stat. Sol. 33 (1969) 599. [15] V. Dolocan, Appl. Phys. 16 (1978) 405. [16] Y. Xiong, M. Wu, J. Ye, Q. Chen, Mater. Lett. 62 (2008) 1165. [17] W. Dong, C. Zhu, J. Phys. Chem. Solids 64 (2003) 265. [18] M. Vila, C. Díaz-Guerra, J. Piqueras, Mater. Chem. Phys. 133 (2012) 559. [19] O.M. Bordun, I.I. Kukharskii, V.V. Dmitruk, V.G. Antonyuk, V.P. Savchin, J. Appl. Spectrosc. 75 (2008) 681. [20] R.J. Betsch, W.B. White, Spectrochim. Acta 34A (1978) 505. [21] V.N. Denisov, A.N. Ivlev, A.S. Lipin, B.N. Mavrin, V.G. Orlov, J. Phys.: Condens. Matter 9 (1997) 4967. [22] S.N. Narang, N.D. Patel, V.B. Kartha, J. Mol. Struct. 327 (1994) 221. [23] A.J. Salazar-Pérez, M.A. Camacho-López, R.A. Morales-Luckie, V. Sánchez-Mendieta, F. Ureña-Núñez, J. Arenas-Latorre, Superficies y Vacio 18 (2005) 4. [24] D. Barreca, F. Morazzoni, G.A. Rizzi, R. Scotti, E. Tondello, Phys. Chem. Chem. Phys. 3 (2001) 1743. [25] X. Liu, H. Cao, J. Yin, Nano Res. 4 (2011) 470. [26] W.E. Morgan, W.J. Stec, J.R. van Wazer, Inorg. Chem. 12 (1973) 953. [27] Vineet S. Dharmadhikari, S.R. Sainkar, S. Badrinarayan, A. Goswami, J. Electron Spectrosc. Relat. Phenom. 25 (1982) 181. [28] A. Gulino, S. La Delfa, I. Fragalà, R.G. Egdell, Chem. Mater. 8 (1996) 1287. [29] Y. Guo, L. Chen, X. Yang, F. Ma, S. Zhang, Y. Yang, Y. Guo, X. Yuan, RSC Advances 2 (2012) 4656. [30] E. Gorlich, J. Haber, A. Stoch, J. Stoch, J. Solid State Chem. 33 (1980) 121. [31] C.W.M. Timmermans, G. Blasse, J. Solid State Chem. 52 (1984) 222. [32] Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, M. Nikl, J. Lumin. 130 (2010) 1963. [33] V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, K. Polak, S. Zazubovich, Y. Zorenko, J. Phys.: Condens. Matter 21 (2009) 415502. [34] A.M. Srivastava, J. Lumin. 78 (1998) 239. [35] M. Gaft, R. Reisfeld, G. Panczer, G. Boulon, T. Saraidarov, S. Erlish, Opt. Mater. 16 (2001) 279.
Collections