Publication:
Laser irradiation-induced α to δ phase transformation in Bi_2O_3 ceramics and nanowires.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-08-13
Authors
Piqueras de Noriega, Javier
Vila Santos, María
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The α-Bi_2O_3 to δ-Bi_2O_3phase transformation has been locally induced by laser irradiation in ceramic samples and single-crystal nanowires of this oxide. The threshold power densities necessary to induce this transformation, as well as the corresponding transformation kinetics and its temporal stability, have been investigated in both kinds of samples by micro-Raman spectroscopy. The appearance of the δ phase was also monitored by spatially resolved photoluminescence spectroscopy. An emission band peaked near 1.67 eV, not observed in α-Bi_2O_3, is tentatively attributed to δ-Bi_2O_3 near band gap transitions.
Description
©2012 American Institute of Physics. This work was supported by MICNN through projects MAT2009-07882 and CSD2009-0013.
Unesco subjects
Keywords
Citation
1. A. Cabot, A. Marsal, J. Arbiol, and J. R. Morante, Sens. Actuators B 99, 74 (2004). http://dx.doi.org/10.1016/j.snb.2003.10.032 2. A. Hameed, T. Montini, V. Gombac, and P. Fornasiero, J. Am. Chem. Soc. 130, 9658 (2008). http://dx.doi.org/10.1021/ja803603y 3. L. Leontie, M. Caraman, M. Delibas, and G. I. Rusu, Mater. Res. Bull. 36, 1629 (2001). http://dx.doi.org/10.1016/S0025-5408(01)00641-9 4. H. A. Harwig, Z. Anorg. Allg. Chem. 444, 151 (1978). http://dx.doi.org/10.1002/zaac.19784440118 5. H. A. Harwig and J. W. Weenk, Z. Anorg. Allg. Chem. 444, 167 (1978). http://dx.doi.org/10.1002/zaac.19784440119 6. N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, J. Eur. Ceram. Soc. 19, 1801 (1999). http://dx.doi.org/10.1016/S0955-2219(99)00009-6 7. N. V. Skorodumova, A. K. Jonsson, M. Herranen, M. Strømme, G. A. Niklasson, B. Johansson, and S. I. Simak, Appl. Phys. Lett. 86, 241910 (2005). http://dx.doi.org/10.1063/1.1948516 8. H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, Appl. Phys. Lett. 87, 231916 (2005). http://dx.doi.org/10.1063/1.2136351 9. M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, Opt. Mater. 33, 480 (2011). http://dx.doi.org/10.1016/j.optmat.2010.10.028 10. H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, Appl. Surf. Sci. 253, 7497 (2007). http://dx.doi.org/10.1016/j.apsusc.2007.03.047 11. P. F. Yan, K. Du, and M. L. Sui, Acta Mater. 58, 3867 (2010). http://dx.doi.org/10.1016/j.actamat.2010.03.045 12. J. Siegel, A. Schropp, J. Solís, C. N. Afonso, and M. Wuttig, Appl. Phys. Lett. 84, 2250 (2004). http://dx.doi.org/10.1063/1.1689756 13. A. J. Birnbaum, G. Satoh, and Y. L. Yao, J. Appl. Phys. 106, 043504 (2009). http://dx.doi.org/10.1063/1.3183950 14. M. Vila, C. Díaz-Guerra, and J. Piqueras, Mater. Chem. Phys. 133, 559 (2012). http://dx.doi.org/10.1016/j.matchemphys.2012.01.088 15. See supplementary material at http://dx.doi.org/10.1063/1.4747198 for XRD and HRTEM of the grown nanowires. [Supplementary Material] 16. R. J. Betsch and W. B. White, Spectrochim. Acta, Part A 34, 505 (1978). http://dx.doi.org/10.1016/0584-8539(78)80047-6 17. V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, J. Phys. Condens. Matter 9, 4967 (1997). http://dx.doi.org/10.1088/0953-8984/9/23/020 18. H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, J. Phys. D: Appl. Phys. 39, 1939 (2006). http://dx.doi.org/10.1088/0022-3727/39/9/032 19. A. Rubbens, M. Drache, P. Roussel, and J. P. Wignacourt, Mater. Res. Bull. 42, 1683 (2007). http://dx.doi.org/10.1016/j.materresbull.2006.11.036 20. M. Yashima and D. Ishimura, Chem. Phys. Lett. 378, 395 (2003). http://dx.doi.org/10.1016/j.cplett.2003.07.014 21. C. E. Mohn, S. Stølen, S. T. Norberg, and S. Hull, Phys. Rev. B 80, 024205 (2009). http://dx.doi.org/10.1103/PhysRevB.80.024205 22. L. Shi, Q. Hao, C. Yu, N. Mingo, X. Kong, and Z. L. Wang, Appl. Phys. Lett. 84, 2638 (2004). http://dx.doi.org/10.1063/1.1697622 23. M. Avrami, J. Chem. Phys. 7, 1103 (1939); http://dx.doi.org/10.1063/1.1750380; M. Avrami, J. Chem. Phys. 8, 212 (1940); http://dx.doi.org/10.1063/1.1750631; M. Avrami, J. Chem. Phys. 9, 177 (1941). http://dx.doi.org/10.1063/1.1750872 24. G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, Appl. Phys. Lett. 97, 022107 (2010). http://dx.doi.org/10.1063/1.3459959 25. S. Venkataraman, H. Hermann, C. Mickel, L. Schultz, D. J. Sordelet, and J. Eckert, Phys. Rev. B 75, 104206 (2007). http://dx.doi.org/10.1103/PhysRevB.75.104206 26. L. E. Depero and L. Sangaletti, J. Solid State Chem. 122, 439 (1996). http://dx.doi.org/10.1006/jssc.1996.0139 27. L. Kumari, J.-H. Lin, and Y.-R. Ma, Nanotechnology 18, 295605 (2007). http://dx.doi.org/10.1088/0957-4484/18/29/295605 28. V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, K. Polak, S. Zazubovich, and Y. Zorenko, J. Phys.: Condens. Matter 21, 415502 (2009). http://dx.doi.org/10.1088/0953-8984/21/41/415502 29. M. Gaft, R. Reisfeld, G. Panczer, G. Boulon, T. Saraidarov, and S. Erlish, Opt. Mater. 16, 279 (2001). http://dx.doi.org/10.1016/S0925-3467(00)00088-4 30. A. Matsumoto, Y. Koyama, and I. Tanaka, Phys. Rev. B 81, 094117 (2010). http://dx.doi.org/10.1103/PhysRevB.81.094117
Collections