Publication:
Luminescence and Raman study of α-Bi_2O_3 ceramics

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-03-15
Authors
Piqueras de Noriega, Javier
Vila Santos, María
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science SA
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Cathodoluminescence in the scanning electron microscope and photoluminescence in a confocal microscope have been used to investigate the luminescence properties of the stable monoclinic α-phase of Bi_2O_3. Powders of this oxide have been sintered at temperatures of 500 °C and 750 °C in air or in nitrogen atmospheres. Spectra of the starting powder and of the samples treated at 500 °C show luminescence bands at 1.50 eV and 1.95 eV as well as a band at 2.1 eV, more prominent in nitrogen treated samples. Sintering at 750 °C leads to quenching of the 1.50 eV infrared emission and the formation of a broad band with emission above 3 eV. The evolution of Raman bands with the sintering treatments has also been investigated.
Description
©2012 Elsevier B.V. This work has been supported by MICINN through projects MAT2009-07882 and CSD2009-0013 and by BSCH-UCM (Project GR35-10A-910146).
Unesco subjects
Keywords
Citation
[1] A. Cabot, A. Marsal, J. Arbiol, J.R. Morante, Sens. Actuators B 99 (2004) 74. [2] A. Hameed, T. Montini, V. Gombac, P. Fornasiero, J. Am. Chem. Soc. 130 (2008) 9658. [3] L. Leontie, M. Caraman, M. Delibas, G.I. Rusu, Mater. Res. Bull. 36 (2001) 1629. [4] H.A. Harwig, Z. Anorg. Allg. Chem. 444 (1978) 151. [5] H.A. Harwig, J.W. Weenk, Z. Anorg. Allg. Chem. 444 (1978) 167. [6] L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Surf. Sci. 507–510 (2002) 480. [7] X. Gou, R. Li, G. Wang, Z. Chen, D. Wexler, Nanotechnology 20 (2009) 495501. [8] S. Park, H. Kim, C. Lee, D.H. Lee, S.S. Hong, J. Korean Phys. Soc. 53 (2008) 1965. [9] L. Kumari, J. Lin, Y. Ma, J. Phys.: Condens. Matter 19 (2007) 406204. [10] W.P. Doyle, J. Phys. Chem. Solids 4 (1958) 144. [11] H. Gobrecht, S. Seeck, H.E. Bergt, A. Märtens, K. Kossmann, Phys. Stat. Sol. 33 (1969) 599. [12] V. Dolocan, Appl. Phys. 16 (1978) 405. [13] Y. Xiong, M. Wu, J. Ye, Q. Chen, Mater. Lett. 62 (2008) 1165. [14] W. Dong, C. Zhu, J. Phys. Chem. Solids 64 (2003) 265. [15] O.M. Bordun, I.I. Kukharskii, V.V. Dmitruk, V.G. Antonyuk, V.P. Savchin, J. Appl. Spectrosc. 75 (2008) 681. [16] L. Kumari, J. Lin, Y. Ma, Nanotechnology 18 (2007) 295605. [17] R.J. Betsch, W.B. White, Spectrochim. Acta 34A (1978) 505. [18] V.N. Denisov, A.N. Ivlev, A.S. Lipin, B.N. Mavrin, V.G. Orlov, J. Phys.: Condens. Matter 9 (1997) 4967. [19] S.N. Narang, N.D. Patel, V.B. Kartha, J. Mol. Struct. 327 (1994) 221. [20] C. Tian, S.-W. Chan, J. Am. Ceram. Soc. 85 (2002) 2222. [21] Q.-H. Hu, K. Stiller, E. Olsson, H.-O. Andrén, P. Berastegui, L.-G. Johansson, Phys. Rev. B 56 (1997) 11997. [22] R.K. Singhal, S. Kumar, P. Kumari, Y.T. Xing, E. Saitovitch, Appl. Phys. Lett. 98 (2011) 092510. [23] G. Blasse, H. Zhiran, A.J.A. Winnubst, A.J. Burggraaf, Mater. Res. Bull. 19 (1984) 1057. [24] C.W.M. Timmermans, G. Blasse, J. Solid State Chem. 52 (1984) 222. [25] Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, M. Nikl, J. Lumin. 130 (2010) 1963. [26] V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, K. Polak, S. Zazubovich, Y. Zorenko, J. Phys.: Condens. Matter 21 (2009) 415502. [27] A.M. Srivastava, J. Lumin. 78 (1998) 239. [28] M. Gaft, R. Reisfeld, G. Panczer, G. Boulon, T. Saraidarov, S. Erlish, Opt. Mater. 16 (2001) 279. [29] T.-K. Tseng, J. Choi, D.-W. Jung, M. Davidson, P.H. Holloway, ACS Appl. Mater. Interfaces 2 (2010) 943. [30] Z. Liu, X. Jing, L. Wang, J. Electrochem. Soc. 154 (2007) H440.
Collections