Publication:
Nanowires and stacks of nanoplates of Mn doped ZnO synthesized by thermal evaporation-deposition

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-02-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science SA
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Mn doped ZnO nano- and microstructures have grown by a catalyst free evaporation-deposition method. Different morphologies such as nanowires, nanorods and stacks of nanoplates with a skewer arrangement around a central rod, have been obtained. Structural and cathodoluminescence investigations show the incorporation of Mn into the structures and the formation of a spinel phase in some areas. The influence of dopant distribution and local growth conditions on the formation of these structures, in particular of the stacks of nanoplates, has been also investigated.
Description
©2012 Elsevier B.V. This work was supported by MICINN (Projects MAT 2009-07882 and CSD 2009-00013).
Unesco subjects
Keywords
Citation
[1] Y.Q. Chang, D.B. Wang, X.H. Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu, D.P. Yu, Appl. Phys. Lett. 83 (2003) 4020–4022. [2] J.J. Liu, M.H. Yu, W.L. Zhou, Appl. Phys. Lett. 87 (2005) 172505. [3] H.L. Yan, X.L. Zhong, J.B. Wang, G.H. Huang, S.L. Ding, G.C. Zhou, Y.C. Zhou, Appl. Phys. Lett. 90 (2007) 082503. [4] H.L. Yan, J.B. Wang, X.L. Zhong, Y.C. Zhou, Appl. Phys. Lett. 93 (2008) 142502. [5] H.L. Yan, J.B. Wang, X.L. Zhong, Appl. Surf. Sci. 257 (2011) 5017–5020. [6] Y. Guo, X. Cao, X. Lan, C. Zhao, X. Xue, Y. Song, J. Phys. Chem. C 112 (2008) 8832–8838. [7] X.T. Zhang, Y.C. Liu, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, X.G. Kong, J. Cryst. Growth 254 (2003) 80–85. [8] A. Urbieta, P. Fernández, J. Piqueras, J. Nano. Res. 4 (2008) 27–32. [9] P. Gao, Z.L. Wang, J. Phys. Chem. B 106 (2002) 12653–12658. [10] J.G. Wen, J.Y. Lao, D.Z. Wang, T.M. Kyaw, Y.L. Foo, Z.F. Ren, Chem. Phys. Lett. 372 (2003) 717–722. [11] Y. Ortega, P. Fernández, J. Piqueras, Nanotechnology 18 (2007) 115606. [12] Y. Ortega, P. Fernández, J. Piqueras, J. Cryst. Growth 311 (2009) 3231–3234. [13] J.Y. Lao, J.G. Wen, Z.F. Ren, Nanoletters 2 (2002) 1287–1291. [14] Y. Ortega, P. Fernández, J. Piqueras, J. Nanosci. Nanotechnol. 10 (2010) 502–507. [15] J. Grym, P. Fernández, J. Piqueras, Nanotechnology 16 (2005) 931–935. [16] S. Karamat, S. Mahmood, J.J. Lin, Z.Y. Pan, P. Lee, T.L. Tan, S.V. Springham, R.V. Ramanujan, R.S. Rawat, Appl. Surf. Sci. 254 (2008) 7285–7289. [17] M. Liu M., A.H. Kitai, P. Mascher, J. Lumin. 54 (1992) 35–42. [18] H.W. Zhang, E.W. Shi, Z.Z. Chen, X.C. Liu, B. Xiao, L.X. Song, J. Magn. Magn. Mater. 305 (2006) 377–380. [19] A. Urbieta, P. Fernández, J. Piqueras, Ch. Hardalov, T. Sekiguchi, J. Phys. D 34 (2001) 2945–2949. [20] T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J. Appl. Phys. 43 (2004) 2602–2606. [21] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68 (1996) 403–405. [22] J.A. García, A. Remón, J. Piqueras, J. Appl. Phys. 62 (1987) 3058–3059. [23] P. Fernández, A. Remón, J.A. García, J. Llopis, J. Piqueras, Appl. Phys. A 46 (1988) 1–3.
Collections