Publication:
Unfolding of differential energy spectra in the MAGIC experiment

Research Projects
Organizational Units
Journal Issue
Abstract
The paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses. (c) 2007 Elsevier B.V. All rights reserved.
Description
© Elsevier BV. We thank Michael Schmelling for fruitful discussions and critical comments.
Keywords
Citation
[1] C. Baixeras, et al., Nucl. Instr. and Meth. A 518 (2004) 188. [2] R. Gold, ANL-6984, 1964, unpublished. [3] G.I. Marchuk, Methods of Numerical Mathematics, Springer, Berlin, 1975. [4] A.N. Tikhonov, V.Ya. Arsenin, Methods of Solution of Ill-posed Problems, Nauka, Moscow, 1979. [5] S.W. Provencher, Comput. Phys. Commun. 27 (1982) 213, 229. [6] V. Blobel, Unfolding methods in high-energy physics experiments, DESY 84-118, 1984. [7] V. Blobel, 1984 CERN School of Computing, Ajguablava, Spain, CERN 85-09, 1984, p. 88. [8] E.A. Belogorlov, et al., Nucl. Instr. and Meth. A 235 (1985) 146. [9] S.F. Giljazov, Methods of Solution of Linear Ill-posed Problems, MSU, Moscow, 1987. [10] V.P. Zhigunov, et al., Nucl. Instr. and Meth. A 273 (1988) 362. [11] M. Bertero, Advances in Electronics and Electron Physics, vol. 75, Academic Press Inc., New York, 1989. [12] V.B. Anykeyev, et al., Nucl. Instr. and Meth. A 303 (1991) 350. [13] M. Schmelling, Nucl. Instr. and Meth. A 340 (1994) 400. [14] V. Blobel, The RUN manual, OPAL Technical Note TN361, 1996. [15] A. Höcker, V. Kartvelishvili, Nucl. Instr. and Meth. A 372 (1996) 469. [16] M. Schmelling, Numerische Methoden der Datenanalyse, MPI-K Heidelberg, 1998, hwww.mpihd.mpg.de/personalhomes/michaelt/public/1998-01i. [17] G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998. [18] G. Cowan, A survey of unfolding methods for particle physics, IPPP Workshop on Advanced Statistics Techniques in Particle Physics, Durham 2002, p. 248. [19] W.H. Press, et al., Numerical Recipes in Cþþ, second ed., Cambridge University Press, Cambridge, 2002. [20] V. Blobel, An Unfolding Method for High Energy Physics, IPPP Workshop on Advanced Statistics Techniques in Particle Physics, Durham, 2002. [21] W. Wittek, Correlations between parameters of extended air showers and their proper use in analyses, 26th International Cosmic Ray Conference, Salt Lake City, Utah, USA, 1999, astro-ph/9908029. [22] P. Majumdar, et al. (MAGIC Collab.), 2005, Proc. of the 29th ICRC, Pune, India, 5-203, astro-ph/0508274. [23] S. Mizobuchi, et al. (MAGIC Collab.), in: Proceedings of the 29th ICRC, Pune, India, 2005, p. 101, astro-ph/0508274. [24] T. Bretz, R. Wagner, (MAGIC Collab.), in: Proceedings of the 28th ICRC, Tsukuba, Japan, 2003, p. 2947. [25] T.M. Kneiske, et al., Astron. Astrophys. 413 (2004) 807. [26] J. Albert, et al., Astrophys. J. (2007), submitted for publication, arXiv:0705.3244. [27] R. Brun, F. Rademakers, hhttp://root.cern.ch/i.
Collections