Publication:
Application of thermodynamic extremum principles

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Association of Physics Teachers
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A simple system is used to illustrate the application of different extremum principles in thermodynamics. The system consists of an ideal gas contained in an adiabatically isolated cylinder interacting with a constant-pressure work device through an adiabatic movable piston. A kinetic model is also used to analyze the time evolution of the system toward the final equilibrium state.
Description
© 2001 American Association of Physics Teachers. S.V. thanks the Comisión Interministerial de Ciencia y Tecnología (CICYT) of Spain under Grant No. PB 98-0261 and the Junta de CyL-FSE of Spain under Grant No. SA097/01 for financial support.
UCM subjects
Unesco subjects
Keywords
Citation
[1] J.W. Gibbs, The Scientific papers of J. W. Gibbs. Thermodynamics (Dover, New York, 1961), Vol. I, pp. 56 and 65. [2] L. Tisza, Generalized Thermodynamics (MIT, Cambridge, MA, 1966), pp. 41–48. [3] J. Kestin, A Course of Thermodynamics (McGraw–Hill, New York, 1979), Vol. II, Chap. 14. [4] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985), Chaps. 5 and 8. [5] M. Bailyn, A Survey of Thermodynamics (AIP Press, New York, 1994), pp. 223–232. [6] E. Kazes and P. H. Cutler, ‘‘Implications of the entropy maximum principle,’’ Am. J. Phys. 56, 560–561 (1988). [7] J. Dunning-Davies, ‘‘Comment on ‘Implications of the entropy maximum principle’ by E. Kazes and P. H. Cutler [Am. J. Phys. 56, 560–561 (1988)],’’ Am. J. Phys. 61, 88–89 (1993). [8] C. Carathéodory, ‘‘Untersuchungen über die Grundlangen der Thermodynamik,’’ Math. Ann. 67, 355–386 (1909). Reprinted in The Second Law of Thermodynamics, edited by J. Kestin (Hutchinson and Ross, Dowden, 1976), pp. 229–256. [9] E. T. Jaynes, ‘‘The minimum entropy production principle,’’ Annu. Rev. Phys. Chem. 31, 579–601 (1980). [10] I. P. Bazarov, Thermodynamics (Pergamon, Oxford, 1964), p. 158. [11] H. B. Callen, Thermodynamics (Wiley, New York, 1960), p. 65. [12] B. Crosignani, P. Di Porto, and M. Segev, ‘‘Approach to thermal equilibrium in a system with adiabatic constraints,’’ Am. J. Phys. 64, 610–613 (1996). [13] Ch. Gruber, ‘‘Thermodynamics of systems with internal adiabatic constraints: Time evolution of the adiabatic piston,’’ Eur. J. Phys. 20, 259–266 (1999). [14] R. P. Bauman and H. L. Cockerham III, ‘‘Pressure of an Ideal Gas on a Moving Piston,’’ Am. J. Phys. 37, 675–679 (1969). [15] C. Fernández-Pineda, A. Díez de los Ríos, and J. I. Mengual, ‘‘Adiabatic invariance of phase volume in some eays cases,’’ Am. J. Phys. 50, 262–267 (1982). [16] A. E. Curzon, ‘‘A thermodynamic consideration of mechanical equilibrium, in the presence of thermally insulating barriers,’’ Am. J. Phys. 37, 404–406 (1969). [17] A. E. Curzon and H. S. Leff, ‘‘Resolution of an entropy maximization controversy,’’ Am. J. Phys. 47, 385–387 (1979). [18] E. Lieb, ‘‘Some problems in statistical mechanics that I would like to see solved,’’ Physica A 263, 491–499 (1999). [19] Ch. Gruber and L. Frachebourg, ‘‘On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states,’’ Physica A 272, 392–428 (1999). [20] B. Crosignani and P. Di Porto, ‘‘On the validity of the second law of thermodynamics in the mesoscopic realm,’’ Europhys. Lett. 53, 290–296 (2001). [21] Ch. Gruber and J. Piasecki, ‘‘Stationary Motion of the Adiabatic Piston,’’ Physica A 268, 412–423 (1999). [22]E. Kestemont, C. Van den Broeck, and M. Malek Mansour, ‘‘The ‘adiabatic’ piston: And yet it moves,’’ Europhys. Lett. 49, 143–149 (2000).
Collections