Publication:
Exchange bias in single-crystalline CuO nanowires

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-05-10
Authors
Piqueras de Noriega, Javier
Vila Santos, María
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Exchange anisotropy has been observed and investigated in single-crystalline CuO nanowires grown by thermal oxidation of Cu. The exchange bias field decreases by increasing temperature and can be tuned by the strength of the cooling field. A training effect has also been observed. The obtained results can be understood in terms of a phenomenological core-shell model, where the core of the CuO nanowire shows antiferromagnetic behavior and the surrounding shell behaves as a spin glass-like system due to uncompensated surface spins.
Description
©2010 American Institute of Physics. This work was supported by MEC through projects MAT2006-01259 and MAT2009-07882.
Unesco subjects
Keywords
Citation
1. V. Franco-Puntes, K. M. Krishnan, and A. P. Alivisatos, Science 291, 2115 (2001). http://dx.doi.org/10.1126/science.1057553 2. A. Hultgren, M. Tanase, C. S. Chen, G. J. Meyer, and D. H. Reich, J. Appl. Phys. 93, 7554 (2003). http://dx.doi.org/10.1063/1.1556204 3. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró, Phys. Rep. 422, 65 (2005). 4. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). http://dx.doi.org/10.1016/S0304-8853(98)00266-2 5. C. Tsang, J. Appl. Phys. 55, 2226 (1984). http://dx.doi.org/10.1063/1.333619 6. R. Jungblut, R. Coehoorn, M. T. Johnson, J. van de Stegge, and A. Reinders, J. Appl. Phys. 75, 6659 (1994). http://dx.doi.org/10.1063/1.356888 7. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2001). http://dx.doi.org/10.1103/PhysRevB.64.174420 8. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogués, Nature (London) 423, 850 (2003). http://dx.doi.org/10.1038/nature01687 9. E. L. Salabaş, A. Rumplecker, F. Kleitz, F. Radu, and F. Schüth, Nano Lett. 6, 2977 (2006). http://dx.doi.org/10.1021/nl060528n 10. J. Y. Yu, S. L. Tang, X. K. Zhang, L. Zhai, Y. G. Shi, Y. Deng, and Y. W. Du, Appl. Phys. Lett. 94, 182506 (2009). http://dx.doi.org/10.1063/1.3132056 11. J. B. Reitz and E. I. Solomon, J. Am. Chem. Soc. 120, 11467 (1998). http://dx.doi.org/10.1021/ja981579s 12. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature (London) 407, 496 (2000). http://dx.doi.org/10.1038/35035045 13. C. T. Hsieh, J. M. Chen, H. H. Lin, and C. H. Shih, Appl. Phys. Lett. 83, 3383 (2003). http://dx.doi.org/10.1063/1.1619229 14. M. A. García, E. Fernández Pinel, J. de la Venta, A. Quesada, V. Bouzas, J. F. Fernández, J. J. Romero, M. S. Martín González, and J. L. Costa-Krämer, J. Appl. Phys. 105, 013925 (2009). http://dx.doi.org/10.1063/1.3060808 15. X. Jiang, T. Herricks, and Y. Xia, Nano Lett. 2, 1333 (2002). http://dx.doi.org/10.1021/nl0257519 16. V. Salgueiriño-Maceira, M. A. Correa-Duarte, M. Bañobre-López, M. Grzelczak, M. Farle, L. M. Liz-Marzán, and J. Rivas, Adv. Funct. Mater. 18, 616 (2008). http://dx.doi.org/10.1002/adfm.200700846 17. See supplementary material at http://dx.doi.org/10.1063/1.3428658 for ZFC and FC hysteresis loops measured at 2 K in the ±15000 Oe range and for field cycle dependence of Heb.[Supplementary Material] 18. E. C. Passamani, C. Larica, C. Marques, A. Y. Takeuchi, J. R. Proveti, and E. Favre-Nicolin, J. Magn. Magn. Mater. 314, 21 (2007). http://dx.doi.org/10.1016/j.jmmm.2007.02.008 19. J. Nogués, C. Leighton, and I. K. Schuller, Phys. Rev. B 61, 1315 (2000). http://dx.doi.org/10.1103/PhysRevB.61.1315 20. M. Patra, S. Majumdar, and S. Giri, Solid State Commun. 149, 501 (2009). http://dx.doi.org/10.1016/j.ssc.2009.01.019 21. L. Del Bianco, D. Fiorani, A. M. Testa, E. Bonetti, and L. Signorini, Phys. Rev. B 70, 052401 (2004). http://dx.doi.org/10.1103/PhysRevB.70.052401
Collections