Publication:
Optical and magnetic properties of CuO nanowires grown by thermal oxidation

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-04-07
Authors
Piqueras de Noriega, Javier
Vila Santos, María
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
CuO nanostructures with different morphologies, such as single-crystal nanowires, nanoribbons and nanorods, have been grown by thermal oxidation of copper in the 380–900 °C temperature range. Cathodoluminescence spectra of the nanostructures show a band peaked at 1.31 eV which is associated with near band gap transitions of CuO. Two additional bands centred at about 1.23 and 1.11 eV, suggested to be due to defects, are observed for nanostructures grown at high temperatures. The magnetic behaviour of nanowires with lengths in the range of several micrometres and diameters of 50–120 nm has been investigated. Hysteresis loops of the nanowires show ferromagnetic behaviour from 5 K to room temperature.
Description
© 2010 IOP Publishing Ltd. This work was supported by MEC through projects MAT2006-01259 and MAT2009-07882.
Unesco subjects
Keywords
Citation
[1] Rakshani A E 1986 Solid State Electron. 29 7. [2] Hansen B J, Lu G and Chen J 2008 J. Nanomater. 830474 published online doi:10.1155/2008/830474. [3] Santra K, Sarkar C K, Mukherjee M K and Gosh B 1992 Thin Solid Films 213 226. [4] Lin H H, Wang C Y, Shih H C, Chen J M and Hsieh C T 2004 J. Appl. Phys. 95 5889. [5] Kaur M, Muthe K P, Despande S K, Choudhury S, Singh J B, Verma N, Gupta S K and Yakhmi J V 2006 J. Cryst. Growth 289 670. [6] Reitz J B and Solomon E I 1998 J. Am. Chem. Soc. 120 11467. [7] Hsieh C T, Chen J M, Lin H H and Shih H C 2003 Appl. Phys. Lett. 83 3383. [8] Poizot P, Laruelle S, Grugeon S, Dupont L and Tarascon J M 2000 Nature 407 496. [9] Wang C, Fu X Q, Xue X Y, Wang Y G and Wang T H 2007 Nanotechnology 18 145506. [10] Xu C K, Liu Y K, Xu G D and Wang G H 2002 Mater. Res. Bull. 37 2365. [11] Wang W, Liu Z, Liu Y, Xu C, Zheng C and Wang G 2003 Appl. Phys. A 76 417. [12] Wu H, Lin D D and Pan W 2006 Appl. Phys. Lett. 89 133125. [13] Jiang X, Herricks T and Xia Y 2002 Nano Lett. 2 1333. [14] Kumar A, Srivastava A K, Tiwari P and Nandedkar R V 2004 J. Phys.: Condens. Matter 16 8531. [15] Xu C H, Woo C H and Shi S Q 2004 Chem. Phys. Lett. 399 62. [16] Zhang K, Rossi C, Tenailleau C, Alphonse P and Chane-Ching J 2007 Nanotechnology 18 275607. [17] Gonçalves A M B, Campos L C, Ferlauto A S and Lacerda R G 2009 J. Appl. Phys. 106 034303. [18] Zhu Y W, Yu T, Cheong F C, Xu X J, Lim C T, Tan V B C, Thong J T L and Sow C H 2005 Nanotechnology 16 88. [19] Xiao H M, Zhu L P, Liu X M and Fu S Y 2007 Solid State Commun. 141 431. [20] Narsinga Rao G, Yao Y D and Chen J W 2005 IEEE Trans. Mag. 41 3409. [21] Huang L S, Yang S G, Li T, Gu B X, Du Y W, Lu Y N and Shi S Z 2004 J. Cryst. Growth 260 130. [22] Wang H, Xu J Z, Zhu J J and Chen H Y 2002 J. Cryst. Growth 244 88. [23] Ito T and Masumi T 1997 J. Phys. Soc. Japan. 66 2185. [24] Koffyberg F P and Benko F A 1982 J. Appl. Phys. 53 1173. [25] Carel C, Mouallem-Bahout M and Gaudé J 1999 Solid State Ion. 117 47. [26] Jeong Y K and Choi G M 1996 J. Phys. Chem. Solids 57 81. [27] Wu D, Zhang Q and Tao M 2006 Phys. Rev. B 73 235206. [28] Wu D 2005 Master Thesis University of Texas. [29] Mäki-Jaskari M A 2006 Modelling Simul. Mater. Sci. Eng. 14 207. [30] Ziolo J, Borsa F, Corti M, Rigamonti A and Parmigiani F 1990 J. Appl. Phys. 67 5864. [31] Dar M A, Kim Y S, Kim W B, Sohn J M and Shin H S 2008 Appl. Surf. Sci. 254 7477. [32] Punnoose A, Magnone H and Seehra M S 2001 Phys. Rev. B 64 174420. [33] Zheng X G, Mori T, Nishiyama K, Higemoto W and Xu C N 2004 Solid State Commun. 132 493. [34] Kondo O, Ono M, Sugiura E, Sugiyama K and Date M 1988 J. Phys. Soc. Japan. 57 3293.
Collections