Publication:
The vapour-liquid transition of charge-stabilized colloidal suspensions: an effective one-component description

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-12-10
Authors
Ruiz, G.
Anta Montalvo, Juan Antonio
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The low-density phase diagrams of charge-stabilized colloidal suspensions of the Derjaguin-Landau-Verwey-Overbeek theory with an approximate effective one-component Hamiltonian given by the volume term and effective pair interactions, and of the classical theory (without including the volume term), are obtained from the hypernetted-chain integral equation at low colloidal charges. In the salt-free case both phase diagrams exhibit a vapour-liquid transition with short-ranged colloid-colloid correlations. This phase separation is compared to the vapour-liquid transition found in binary mixtures of highly asymmetrical hard spheres.
Description
© 2003 IOP Publishing Ltd. Workshop on Effective Many-Body Interactions and Correlations in Soft Matter (2003. Lyon, France). We are grateful to M Dijkstra and R van Roij for sending to us their simulation results. We wish to thank M Baus and E Lomba for many useful discussions. We acknowledge financial support from the Dirección General de Enseñanza Superior e Investigación Científica (DGESCYT) under grants No BFM2001-1017-C03-03 (GR and CFT) and No BQU2001-3615-C02-01 (JAA) and from the Instituto de Salud Carlos III grant No 01/1664 (JAA).
UCM subjects
Unesco subjects
Keywords
Citation
[1] See e.g. Poon W C K and Pusey P N 1995 Observation, Prediction and Simulation of Phase Transitions in Complex Fluids ed M Baus, L F Rull and J P Ryckaert (Dordrecht: Kluwer) [2] Likos C N 2001 Phys. Rep. 348 267 [3] van Roij R, Dijkstra M and Hansen J P 1999 Phys. Rev. E 59 2010, see also Denton A R 2000 Phys. Rev. E 62 3855 [4] Verwey J W and Overbeek J Th G 1948 Theory of the Stability of Lyotropic Colloids (Amsterdam: Elsevier) [5] Crocker J C and Grier D G 1994 Phys. Rev. Lett. 73 352; Kepler G M and Fraden S 1994 Phys. Rev. Lett. 73 356; Crocker J C and Grier D G 1996 Phys. Rev. Lett. 77 1897 [6] Tata B R V, Rajalakshmi M and Arora A K 1992 Phys. Rev. Lett. 69 3778; Larsen A E and Grier D G 1996 Phys. Rev. Lett. 76 3862; Larsen A E and Grier D G 1997 Nature 385 230 [7] Evans R 1979 Adv. Phys. 28 143 [8] Ascarelli P and Harrison R 1969 Phys. Rev. Lett. 22 285 [9] Robbins M O, Kremer K and Grest G G 1988 J. Chem. Phys. 88 3286; Thimuralai D 1989 J. Phys. Chem. 93 5637; Meijer E J and Frenkel D 1991 J. Chem. Phys. 94 2269; Dupont G, Moulinasse S, Ryckaert J P and Baus M 1993 Mol. Phys. 79 453 [10] Dijkstra M and van Roij R 1998 J. Phys.: Condens. Matter 10 1219 [11] Gray C G and Gubbins K E 1984 Theory of Molecular Fluids (Oxford: Clarendon) [12] Tejero C F 2003 J. Phys.: Condens. Matter 15 S395; Tejero C F and Baus M 2003 J. Chem. Phys. 118 892 [13] Belloni L 1986 Phys. Rev. Lett. 57 2026 [14] Anta J A and Lago S 2002 J. Chem. Phys. 116 10514, see also Anta J A, Bresme F and Lago S 2003 J. Phys.: Condens. Matter 15 S3491 [15] Belloni L 2000 J. Phys.: Condens. Matter 12 R549 [16] Louis A A 2002 J. Phys.: Condens. Matter 14 9187
Collections