Publication:
Analysis of the electric field induced forces in erythrocyte membrane pores using a realistic cell model

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2006-12-07
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We calculate the induced electric stress forces on transient hydrophobic pores in the membrane of an erythrocyte exposed to an electric field. For this purpose, we use a finite element numerical technique and a realistic shape for the biconcave erythrocyte represented by a set of parametric equations in terms of Jacobi elliptic functions. The results clearly show that the electrical forces on the base and sidewalls of the pore favour the opening of the pore. A comparison of the force densities obtained for an unstretched flat membrane and for the realistic erythrocyte model shows that the thinning and curvature of the membrane cannot be neglected. We also show that the pore deformation depends strongly on the orientation of the pore with respect to the external field, and in particular is very small when the field is tangent to the membrane surface.
Description
© IOP Publishing Ltd. This work was supported by the Comunidad de Madrid under Grant number: PR45/05-14166.
Unesco subjects
Keywords
Citation
Abidor I.G., Arakelyan V. B., Chermomordik L. V., Chizmadzhev Y. A., Patushenko V. F. and Tarasevich M. R., 1979, Electric breakdown of bilayer lipid membranes: I. Main experimental facts and their qualitative discussion, Bioelectrochem. Bioenerg. 6, 37–52. Baumann M., 2001, Early stage shape change of human erythrocytes after application of electric field pulses, Mol. Membr. Biol. 18, 153–60. Becker R., 1964, Electromagnetic Fields and Interactions(Glasgow: Blackie & Son Ltd) p 129. Bernardi P., Cavagnaro M., d’Inzeo X. and Liberti M., 1999, Proc. URSI XXVI General Assembly, p 616. Bier M., Chen W., Gowrishankar T. R., Astumian R. D. and Lee R. C., 2002, Resealing dynamics of a cell membrane after electroporation, Phys. Rev. E 66, 062905(4). Bloor M. I. G. and Wilson M. J., 2000, Method for efficient shape parametrization of fluid membranes and vesicles, Phys. Rev. E 61, 4218–29. Chang D. C., Chassy B. M., Saunders J. A. and Sowers A. E., 1992, Guide to Electroporation and Electrofusion (New York: Academic). Chang D. C. and Reese T. S., 1990, Changes in membrane structure induced by electroporation as revealed by rapidfreezing electron microscopy, Biophys. J. 58, 01–12. Chang S. K. W., 1992, Electric field induced force within the red blood cell membrane, Proc. 18th Northeast Bioengineering Conf. vol 12–13 pp 5–6. Chang S. K., 1993, The effect of frequency on electric field induced surface force in red blood cell membrane, Proc. IEEE 19th Annual Northeast Bioengineering Conf. pp 86–7. Chen C., Smye S. W., Robinson M. P. and Evans J. A., 2006, Membrane electroporation theories: a review, Med. Biol. Eng. Comput. 44, 5–14. DeBruin K. A. and Krassowska W., 1999a, Modeling electroporation in a single cell: I. Effects of field strength and rest potential, Biophys. J. 77, 1213–24. DeBruin K. A. and Krassowska W., 1999b, Modeling electroporation in a single cell: II. Effects of ionic concentrations, Biophys. J. 77, 1225–33. Ding E. J. and Aidun C. K., 2006, Cluster size distribution and scaling for spherical particles and red blood cells in pressure-driven flows at small Reynolds number, Phys. Rev. Lett. 96, 204502(4). Douglas J. Jr, Santos J. E. and Sheen D., 2000, A nonconforming mixed finite element method for Maxwell’s equations, Math. Models Methods Appl. Sci. 10, 593–613. Dumez H., Reinhart W., Guetens G. Bruijn E., 2004. Human red blood cells: rheological aspects, uptake, and release of cytotoxic drugs. Crit. Rev. Clin. Lab. Sci. 41. 159–88. Fosnaric M., Kralj-Iglic V., Bohinc K. and May S., 2003, Stabilization of pores in lipid bilayers by anisotropic inclusions, J. Phys. Chem. B 107, 12519–26. Frey W., White J. A., Price R. O., Blackmore P.F., Joshi R. P., Nuccitelli R., Beebe S. J., Schoenbach K. H. and Kolb J. F., 2006, Plasma membrane voltage changes during nanosecond pulsed electric field exposure, Biophys. J. 90, 3608–15. Gimsa J. and Wachner D., 2001a, On the analytical description of the transmembrane voltage induced on spheroidal cells with zero membrane conductance, Eur. Biophys. J. 30, 463–6. Gimsa J. and Wachner D., 2001b, Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells, Biophys. J. 81, 1888–96. Giner V., Sancho M. and Martínez G., 1995, Electromagnetic forces in dissipative dielectric media, Am. J. Phys. 63, 749–53. Gowrishankar T. R. and Weaver J. C., 2003, An approach to electrical modelling of single and multiple cells, Proc. Natl Acad. Sci. USA 100, 3203–8. Hercules W. A., Lindesay J. and Coble A., 2002, Theoretical calculation of the electric field in the vicinity of a pore formed in a cell membrane, Preprint org:physics/0206027. Hercules W. A., Lindesay J. and Coble A., 2003, lectroporation of biological cells embedded in a polycarbonate filter, Preprint org:physics/0308015. Isambert H., 1998, Understanding the electroporation of cells and artificial bilayer membranes, Phys. Rev. Lett. 80, 3044–7. Jin J., 1993, The Finite Element Method in Electromagnetics New York: Wiley). Kinosita K. Jr and Tsong T. Y., 1977a, Hemolysis of human erythrocytes by a transient electric field, Proc. Natl Acad. Sci. USA 74, 1923–7. Kinosita K. Jr and Tsong T. Y., 1977b, Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Nature 268, 438–41. Kinosita K. Jr and Tsong T. Y., 1979, Voltage-induced conductance in human erythrocyte membranes, Biochim. Biophys. Acta 554, 479–97. Kuchel P. and Fackerell E., 1999, Parametric equation representative of biconcave erythrocytes, Bull. Math. Biol. 61, 209–20. Leontiadou H., Mark A. E. and Marrink S. J., 2004, Molecular dynamics simulations of hydrophilic pores in lipid bilayers, Biophys. J. 86, 2156–64. Lewis T. J., 2003, A model for bilayer membrane electroporation based on resultant electromechanical stress, IEEE Trans. Dielectr. Electr. Insul. 10, 769–77. Li S., 2004, Electroporation Gene therapy: new developments in vivo and in vitro, Curr. Gene Ther. 4, 309–16. Liu L. M. and Cleary S. F., 1995, Absorbed energy distribution from radiofrequency electromagnetic radiation in mammallian cell model: effect of membrane-bound water, Bioelectromagnetics 16, 160–71. Liu C., Sheen D. and Huang K., 2003, A hybrid numerical method to compute erythrocyte TMP in low-frequency electric fields, IEEE Trans. Nanosci. 2, 104–8. Magnani M., 2003, Erythrocyte Engineering for Drug Delivery and Targeting (New York/Dordrecht: Plenum/Kluwer). Muñoz S., Sebastián J. L., Sancho M. and Miranda J. M., 2003, A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure, Phys. Med. Biol. 48, 1649–59. Muñoz S., Sebastián J. L., Sancho M. and Álvarez G., 2006, Modelling normal and altered human erythrocyte shapes by a new parametric equation: application to the calculation of induced transmembrane potentials, Bioelectromagnetics 27, 521–7. Neu J. C. and Krassowska W., 1999, Asymptotic model of electroporation, Phys. Rev. E 59, 3471–82. Oliver L. D. and Coster H. G. L., 2003, Electrical breakdown of human erythrocytes: a technique for the study of electro-haemolysis, Bioelectrochemistry 61, 9–19. Saulis G., 1999, Cell electroporation: estimation of the number of pores and their sizes, Biomed. Sci. Instrum. 35, 291–6. Saulis G., 2005, The loading of human erythrocytes with small molecules by electroporation, Cell. Mol. Biol. Lett. 10, 23–35. Sebastián J. L., Muñoz S., Sancho M. and Miranda J. M., 2001, Analysis of the influence of the cell geometry, orientation and cell proximity effects on the electric field distribution from direct RF exposure, Phys. Med. Biol. 46, 213–25. Sebastián J. L., Muñoz S., Sancho M. and Miranda J. M., 2004, Modeling the internal field distribution in human erythrocytes exposed to MW radiation, Bioelectrochemistry 64, 39–45. Sebastián J. L., Muñoz S., Sancho M., Miranda J. M. and Álvarez G., 2005, Erythrocyte rouleau formation under polarized electromagnetic fields, Phys. Rev. E 72, 031913(9). Simeonova M., Wachner D. and Gimsa J., 2002, Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm, Bioelectrochemistry 56, 215–8. Smith K. C., Neu J. C. and Krassowska W., 2004, Model of creation and evolution of stable electropores for DNA delivery, Biophys. J. 86, 2813–26. Schwarz S., Haest C. W .and Deuticke B., 1999, Extensive electroporation abolishes experimentally induced shape transformations of erythrocytes: a consequence of phospholipid symmetrisation?, Biochim. Biophys. Acta 1421, 361–79. Stewart D. A. Jr, Gowrishankar T. R. andWeaver J. C., 2004, Transport lattice approach to describing cell electroporation: use of a local asymptotic model, IEEE Trans. Plasma Sci. 32,1696–708. Tarek M., 2005, Membrane electroporation: a molecular dynamics simulation, Biophys. J. 88, 4045–53. Tieleman D. P., 2004, The molecular basis of electroporation, BMC Biochem. 5, 1–12. Tsong T. Y., 1991, Electroporation of cell membranes, Biophys. J. 60, 297–306. Weaver J. C., 1993, Electroporation: a general phenomenon for manipulating cells and tissues, J. Cell Biochem. 51, 426–35. Weaver J. C., 1995, Electroporation theory. Concepts and mechanisms, Methods Mol. Biol. 55, 3–28. Weaver J. C., 2000, Electroporation of cells and tissues, IEEE Trans. Plasma Sci. 28, 24–33. Weaver J. C., 2003, Electroporation of biological membranes from multicellular to nano scales, IEEE Trans. Dielectr. Electr. Insul. 10, 754–68. Weaver J, C, and Chizmadzhev Y, A,. 1996. Theory of Electroporation: a review, Bioelectrochem. Bioenerg. 41, 135–60. Winterhalter M. and Helfrich W., 1987, Effect of voltage on pores in membranes, Phys. Rev. A 36, 5874–7. Wolfram S., 2003, The Mathematica Book (Champaign, IL: Wolfram Media). Yang M. and Chen Y., 1999, AutoMesh: an automatically adjustable, nonuniform, orthogonal FDTD mesh generator, IEEE Antennas Propag. Mag. 41, 13–9. Zald P. B., Cotter M. A.II and Robertson E. S., 2000, Improved transfection efficiency of cells by radio frequency electroporation, BioTechniques 28, 418–20. Zimmermann U., Pilwat G., Beckers F. and Riemann F., 1976, Effects of external electrical fields on cell membranes, Bioelectrochem. Bioenerg. 3, 58–83. Wang Z. and Frenkel D., 2005, Pore nucleation in mechanically stretched bilayer membranes, J. Chem. Phys. 123, 154701–6.
Collections