Publication:
Isotropic-nematic transition of D-dimensional hard convex-bodies within the effective-liquid approach

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1992-05-15
Authors
Cuesta, J. A.
Baus, Marc
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Density-functional theory within the effective-liquid approximation is applied to the problem of the isotropic-nematic transition of D-dimensional hard convex bodies. It is shown that the free-energy functional factorizes into its radial and angular contributions. Due to this factorization two different versions of the self-consistent equations can be implemented, and it is shown that in D = 3 they coincide with previous theories. In the present work all the formulas are worked out with a particular choice for the angular distribution: the one-order-parameter approximation. The problem of determining the excluded volume of two hard convex bodies is discussed. For hard ellipsoids the Gaussian-overlap approximation is used, whereas an exact formula is given for the excluded volume of two hard spherocylinders. For D = 2 the virial coefficients of the isotropic phase as well as the transition are incorrectly predicted, due to the approximation of the direct correlation function involved. For D = 3 the results are in very good agreement with simulations. Expression and data for the isotropic-nematic transition for D > 3 are also provided. Extensive comparisons with the results of other theories are made throughout. The one-order-parameter approximation is proven not to alter the order of the transition. Finally, it is shown that the present approximation becomes exact in the large-D limit.
Description
© 1992 The American Physical Society. We are grateful to Hong Xu for allowing us to use some of her unpublished material on hard spherocylinders. One of us (J.A.C.) is also indebted to her for some very valuable discussions. We are also grateful to Patricia Lamas. This work has been partially supported by a grant from the Dirección General de Investigación Científica y Técnica (Spain) under Grant No. PB88-0140. One of us (M.B.) acknowledges the financial support of the Fonds National de la Recherche Scientifique and also from the Association Euratom-Etat Belge.
UCM subjects
Unesco subjects
Keywords
Citation
[1] B.J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208 (1957). [2] B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962). [3] See M. Baus, J. Stat. Phys. 48, 1129 (1987); and J. Phys. Condens. Matter 2, 2111 (1990) for a review of the DFT applied to the study of freezing. [4] R. Evans, Adv. Phys. 28, 143 (1979). [5] T. V. Ramakrishnan and M. Yussouf, Phys. Rev. B 19, 2775 (1979). [6] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986). [7] J. F. Lutsko and M. Baus, Phys. Rev. A 41, 6647 (1990). [8] P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974). [9] L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949). [10] R. Eppenga and D. Frenkel, Mol. Phys. 52, 1303 (1984). [11] D. Frenkel and R. Eppenga, Phys. Rev. A 31, 1776 (1985). [12] A. Stroobants, H. N. W. Lekkerkerker, and D. Frenkel, Phys. Rev. A 36, 2929 (1987). [13] D. Frenkel, J. Phys. Chem. 92, 3280 (1988); J. A. C. Veerman and D. Frenkel, Phys. Rev. A 41, 3237 (1990). [14] M. P. Allen and M. R. Wilson, J. Comput. -Aided Mol. Design 3, 335 (1989). [15] D. Frenkel and B.M. Mulder, Mol. Phys. 55, 1171 (1985). [16] M. P. Allen, Liq. Cryst. 8, 499 (1990). [17] J. Vieillard-Baron, J. Chem. Phys. 56, 4729 (1972). [18] J. A. Cuesta and D. Frenkel, Phys. Rev. A 42, 2126 (1990). [19] M. D. Lipkin and D. W. Oxtoby, J. Chem. Phys. 79, 1939 (1983);T. J. Sluckin and P. Shukla, J. Phys. A 16, 1539 (1983). [20] B.M. Mulder and D. Frenkel, Mol. Phys. 55, 1193 (1985). [21] B.Tjipto-Margo and G. T. Evans, J. Chem. Phys. 93, 4254 (1990). [22] U. P. Singh and Y. Singh, Phys. Rev. A 33, 2725 (1986). [23] J. F. Marko, Phys. Rev. Lett. 60, 325 (1988). [24] A. Perera, G. N. Patey, and J. J. Weis, J. Chem. Phys. 89, 6941 (1988). [25] B. M. Mulder, Phys. Rev. A 35, 3095 (1987); A. M. Somoza and P. Tarazona, J. Chem. Phys. 91, 517 (1989); R. HoJyst and A. Poniewierski, Phys. Rev. A 39, 2742 (1989); A. Poniewierski and R. HoJyst, ibid 41, 6871 (.1990). [26] R. HoJyst and A. Poniewierski, Mol. Phys. 68, 381 (1989). [27] M. Baus, J. L. Colot, X. G. Wu, and H. Xu, Phys. Rev. Lett. 59, 2184 (1987); J. L. Colot, X. G. Wu, H. Xu, and M. Baus, Phys. Rev. A 38, 2022 (1988). [28] J. A. Cuesta, C. F. Tejero, and M. Baus, Phys. Rev. A 39, 6498 (1989). [29] J. A. Cuesta, C. F. Tejero, H. Xu, and M. Baus, Phys. Rev. A 44, 5306 (1991). [30] S. D. Lee, J. Chem. Phys. 87, 4932 (1987);83, 7036 (1988). [31] L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam 17, 793 (1914). [32] For the solution of a 1D fiuid with nearest-neighbor interaction in an arbitrary external field see J. K. Percus, in Simple Models of Equilibrium and Nonequilibrium Phenomena, edited by J. L. Lebowitz (North-Holland, Amsterdam, 1987); the solution of a simple 1D model with anisotropic hard-core interactions is given in C. F. Tejero and J. A. Cuesta, Physica A 168, 942 (1990); solutions for 1D spin models can be found in J. K. Percus, J. Stat. Phys. 16, 299 (1977);and C. F. Tejero, ibid. 48, 531 (1987). [33] R. Pynn, J. Chem. Phys. 60, 4579 (1974). [34] M. Baus, J. Phys. Condens. Matter 1, 3131 (1989). [35] M. Baus and J. L. Colot, Phys. Rev. A 36, 3912 (1987). [36] P. Tarazona, Phys. Rev. A 31, 2672 (1985). [37] H. N. W. Lekkerkerker, Ph. Coulon, R. Van der Haegen, and R. Debliek, J. Chem. Phys. 80, 3427 (1984). [38] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965); Table of Integrals, Series and Products, edited by I. S. Gradshteyn and I. M. Ryzhik (Academic, New York, 1980). [39] S. D. Lee and R. B.Meyer, J. Chem. Phys. 84, 3443 (1986). [40] T. Boublik and I. Nezbeda, Collect. Czech. Chem. Commun. 51, 2301 (1986). [41] B. J. Berne and P. Pechukas, J. Chem. Phys. 56, 4213 (1972). [42] J. A.. Cuesta and C. F. Tejero, Phys. Lett. A 152, 15 (1991). [43] I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Phys. Rev. B30, 3933 (1984). [44] Y. Song and E. A. Mason, Phys. Rev. A 41, 3121 (1990). [45] T. Boublik, Mol. Phys. 27, 1415 (1974); 29, 421 (1975). [46] Y. Rosenfeld, J. Chem. Phys. 89, 4272 (1988). [47] G. Tarjus, P. Viot, S. M. Ricci, and J. Talbot, Mol. Phys. 73, 773 (1991). [48] J. A. Cuesta and D. Frenkel (unpublished). [49] M. Rigby, Mol. Phys. 66, 1261 (1989); D. Frenkel, ibid 65, 493 (1988). [50] R. F. Kayser, Jr. and H. J. Raveche, Phys. Rev. A 17, 2067 (1978). [51] M. E. Mann, C. H. Marshall, and A. D. J. Haymet, Mol. Phys. 66, 493 (1989). [52] H. L. Frisch, N. Rivier, and D. Wyler, Phys. Rev. Lett. 54, 2061 (1985); H. L. Frisch and J. K. Percus, Phys. Rev. A 35, 4696 (1987). [53] H. O. Carmesin, H. L. Frisch, and J. K. Percus, Phys. Rev. B40, 9416 (1989). [54] H. O. Carmesin, H. L. Frisch, and J. K. Percus, J. Stat. Phys. 63, 791 (1991
Collections