The result of the convolution of the function \(f \) with a Dirac delta function \(\delta \) is given by:

\[
\delta * f(x) = f(x)
\]

Notice that, in this case, \(\delta * f(x) \) is the Dirac delta function evaluated at \(x \).

1. Notations

Notations

Key words: analytic function, boundary function, boundary.

Abstract

An analytic function is a function that is locally given by a convergent power series.

Jose M. Ansari, Jerónimo López-Salazar.

Analytic continuation of an open set
is holomorphic in \(H \). Therefore, if \(f \) is holomorphic in \(H \), then one cannot expand the function \(f \) into a series of \(\mathcal{H}_{\alpha} \) functions. The theorem follows.

\[\int_0^{\infty} \frac{\mu}{(0z - z)^{1/2}} \, dz = i \phi \]

3. Extension to a Region Open Set in the Completion

\[f = \int f \phi \] such that the kernel \(f \phi \) can be written as \(\mathcal{H}_{\alpha} \) functions.

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

Let us denote

\[(\alpha) = \int f \phi \]

Then, the kernel \(f \phi \) can be written as \(\mathcal{H}_{\alpha} \) functions.

\[\int_0^{\infty} \frac{\mu}{(0z - z)^{1/2}} \, dz = i \phi \]

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi = \int f \phi \]

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The next proposition shows that

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

Theorem 3.1

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The theorem follows.

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The next proposition shows that

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

Theorem 3.1

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The theorem follows.

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The next proposition shows that

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The theorem follows.

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The next proposition shows that

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The theorem follows.

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The next proposition shows that

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The theorem follows.

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The next proposition shows that

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The theorem follows.

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The next proposition shows that

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The theorem follows.

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The next proposition shows that

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The theorem follows.

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The next proposition shows that

\[\left(\frac{\mu}{(0z - z)^{1/2}} \right) f \phi \]

The theorem follows.
\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} H \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

Since \(\mathcal{O} \) is convex and \(v \) is a convex combination of \(\mathcal{O} \), we have that

\[v \in \mathcal{O} \]

and

\[v \in \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

Then, by definition, we have that

\[\forall \gamma \in \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

and

\[\forall \gamma \in \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

Furthermore, since \(\mathcal{O} \) is a convex combination of \(\mathcal{O} \), we have that

\[\forall \gamma \in \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

and

\[\forall \gamma \in \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

Thus, we conclude that

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

and

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

Therefore, we have that

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

and

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

Thus, we conclude that

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

and

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

Therefore, we have that

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

and

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

Thus, we conclude that

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

and

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

Therefore, we have that

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]

and

\[\mathcal{O} \supset \left(\frac{\epsilon}{1+\epsilon} \right)^{\frac{\gamma}{2}} \mathcal{O} \]
\[\left\{ \gamma \in \mathbb{D} : \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \right\} \subseteq \mathbb{D} \]

where \(\mathbb{D} \) is the unit disc. Therefore, the function

\[\left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

is holomorphic on \(\mathbb{D} \). Hence, we have

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]

for all \(z \in \mathbb{D} \). Therefore, the function

\[f(z) = \left(\frac{\beta}{\gamma} \cdot \left(\frac{\gamma}{\alpha} \right) \right) \sum_{n=0}^{\infty} z^n \]
For every $x \in \mathbb{R}$, let $f(x) = x^2$. Then f is a monotonically non-increasing function.

Let $A = \{(x,y) \in \mathbb{R}^2 : y < x\}$. Then A is a non-empty subset of \mathbb{R}^2.

Proposition 2.3. Let A be a non-empty subset of a normed space X. Then A is open if and only if $x \in A$ implies that $\forall \epsilon > 0$, the closed ball $B(x, \epsilon)$ is contained in A.

Let $f : X \to \mathbb{R}$ be a continuous function.

For every $x \in X$, let $f(x) = x^2$. Then f is a monotonically non-increasing function.
The image contains a page of a mathematical document with symbols and equations. The content is too complex to transcribe accurately into plain text without losing the mathematical meaning. It seems to be discussing advanced mathematical concepts, possibly related to topology or set theory, given the presence of symbols like \mathcal{O}, \mathcal{N}, and \mathcal{U}, and equations involving sets and functions.

Due to the complexity and the nature of the content, a precise transcription is not feasible without a deeper understanding of the specific mathematical context. If you need assistance with a specific part of the document, please provide more context or specify the section you are interested in.
1. Introduction

This is a survey on recent results on topological classification of finite groups.

Abstract

This is a recent survey of recent results on topological classification of finite groups.

References

Emilio Buzano and Francisco Javier Cere

Topological classification of finite groups acting on compact surfaces