Publication:
Field emission properties of gallium oxide micro- and nanostructures in the scanning electron microscope

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-01
Authors
López, Iñaki
Méndez Martín, Bianchi
Piqueras de Noriega, Javier
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley-V C H Verlag GMBH
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The field emission properties of gallium oxide nanowires grown by thermal evaporation-deposition have been investigated inside the chamber of a scanning electron microscope. Turn on electric fields and enhancement factors have been determined for Sn doped nanowires. X-ray photoelectron spectroscopy measurements have been performed to calculate the work function of Sn doped Ga2O3. The results show improved field emission properties of Sn doped Ga2O3 nanowires, with a lower threshold field (below 1.0 V/mu m). The obtained values are competitive with those achieved in other nanostructured materials, including carbon nanotubes.
Description
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This work has been supported by MICINN (Projects MAT 2009-07882 and Consolider Ingenio CSD 2009-00013) and by BSCH-UCM (Project GR35-10A-910146). The authors are grateful to Dr Luca Gregoratti at the Sincrotrone Trieste for useful advises on XPS measurements.
UCM subjects
Física de materiales
Unesco subjects
Keywords
Citation
[1] N. S. Xu and S. E. Huq, Mater. Sci. Eng. R 48, 47 (2005). [2] J. Zhou, S. Z. Deng, N. S. Xu, J. Chen, and J. C. She, Appl. Phys. Lett. 83, 2653 (2003). [3] J. Liu, Z. Zhang, Y. Zhao, X. Su, S. Liu, and E. Wang, Small 1, 310 (2003). [4] Y. T. Lin, C. Y. Chen, C. P. Hsiung, K. W. Chang, and J. Y. Gan, Appl. Phys. Lett. 89, 063123 (2006). [5] X. Wang, J. Zhou, C. Lao, J. Song, N. Xu, and Z. L. Wang, Adv. Mater. 19, 1627 (2007). [6] J. Lin, Y. Huang, Y. Bando, C. Yang, C. Li, and D. Goldberg, ACS Nano 4, 2452 (2010). [7] E. Nogales, J. A. Garcı´a, B. Me´ndez, and J. Piqueras, J. Appl. Phys. 101, 033517 (2007). [8] E. Nogales, B. Méndez, and J. Piqueras, Nanotechnology 19, 035713 (2008). [9] E. Nogales, J. A. García, B. Me´ndez, and J. Piqueras, Appl. Phys. Lett. 91, 133108 (2007). [10] Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang, and C. Gu, J. Phys. Chem. B 110, 796 (2006). [11] J. Zhan, Y. Bando, J. Hu, Y. Li, and D. Goldberg, Chem. Mater. 16, 5158 (2004). [12] Y. Huang, Z. Wang, Q. Wang, C. Gu, C. Tang, Y. Bando, and D. Goldberg, J. Phys. Chem. C 113, 1980 (2009). [13] C. Cao, Z. Chen, X. An, and H. Zhu, J. Phys. Chem. C 112, 95 (2008). [14] Y. Bayam, V. J. Logeeswaran, A. M. Katzenmeyer, R. J. Chacon, M. C. Wong, C. E. Hunt, and M. Saif Islam, Proceedings 8th IEEE Conference on Nanotechnology (IEEE, Piscataway, NJ, USA, 2008), pp. 573–575. [15] G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag, and A. Patra, J. Phys. D 42, 185409 (2009). [16] E. Nogales, B. Me´ndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005). [17] E. Nogales, B. Me´ndez, J. Piqueras, and J. A. García, Nanotechnology 21, 115201 (2009). [18] L. Binet and D. Gourier, J. Phys. Chem. Solids 59, 1241 (1998). [19] M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett. 77, 4166 (2000). [20] T. Minami, T. Miyata, and T. Yamamoto, Surf. Coat. Technol. 108–109, 583 (1998). [21] J. Robertson and B. Falabretti, Mater. Sci. Eng. B 135, 267 (2006). [22] D. Y. Zhong, G. Y. Zhang, S. Liu, T. Sakurai, and E. G. Wang, Appl. Phys. Lett. 80, 506 (2002). [23] J. M. Bonard, K. A. Dean, B. F. Coll, and C. Klinke, Phys Rev. Lett. 89, 197602 (2002).
Collections