Dimorphism and endemism in *Hebetoxyites* (Ammonoidea, lower Bajocian) from the Iberian Range (Spain)

Sixto Rafael Fernández-López

Abstract

New findings of lower Bajocian, haploceratid ammonites (Cephalopoda, Mollusca) of the genus *Hebetoxyites* from the Albarracín area are described and revised alongside specimens previously collected from the Iberian Range. Three species have been identified: *H. hebes* Buckman, *H. incongruens* Buckman and *H. mouterdei* Fernández-López. Indigenous populations of these Tethyan species in the Iberian carbonate platform system, including macroconchs and microconchs, are interpreted as immigration and colonization of shallow-water marine environments by Submediterranean taxa during a short interval of the early Bajocian. As peramorphic result of palingenetic evolution, a chronoclone from strongly ribbed, stout forms of the Ovale Zone (including *H. mouterdei*), to oxycones with blunt, simple or irregularly branched ribbing of the Laeviuscula Zone (including *H. incongruens*), through intermediate forms belonging to *H. hebes*, has been recognized. These successive species of *Hebetoxyites* provide a basis for correlation and subzonal division of the Ovale and Laeviuscula zones in the Iberian Range.

Keywords
Ammonites, Middle Jurassic, Taphonomy, Systematics, Evolution, Submediterranean Province.

Resumen

Dimorfismo y endemismo en *Hebetoxyites* (Ammonoidea, Bajociense inferior) de la Cordillera Ibérica.- Nuevos ammonites haplocerádidos (Cephalopoda, Mollusca) del Bajociense inferior del género *Hebetoxyites* hallados en el área de Albarracín son descritos junto a ejemplares revisados de colecciones previas de la Cordillera Ibérica. Tres especies han sido identificadas: *H. hebes* Buckman, *H. incongruens* Buckman y *H. mouterdei* Fernández-López. Las poblaciones indígenas de estas especies del Tethys en el sistema de plataformas carbonáticas de Iberia, incluyendo macroconchas y microconchas, son interpretadas como un resultado de inmigración y colonización de ambientes marinos poco profundos, por taxones submediterráneos durante un breve intervalo del Bajocian temprano. Como resultado peramórfico de evolución palingenética, una cronoclina ha sido reconocida: desde formas robustas, fuertemente costuladas, de la Zona Ovale (pertenecientes a *H. mouterdei*), hasta oxiconos de costulación roma, simple o irregularmente raminficada, con numerosas secundarias en el flanco externo de la Zona Laeviuscula (incluyendo *H. incongruens*), pasando por formas intermedias pertenecientes a *H. hebes*. Estas especies sucesivas de *Hebetoxyites* permiten establecer una división y correlación subzonal de las zonas Ovale y Laeviuscula en la Cordillera Ibérica.

Palabras claves
Ammonites, Jurásico Medio, Tafonomía, Sistemática, Evolución, Provincia Submediterránea.

I. INTRODUCTION

Hebetoxyites are mainly known from Tethyan areas, as a relatively scarce component of certain lower Bajocian ammonite assemblages (Buckman 1922, 1924, in 1909-1930; Fernández-López, 1985, 2011; Sandoval, 1985; Benshill, 1989, 1990; Sadki, 1996; Dietze et al., 2007; Yin, 2010). In addition, *Hebetoxyites* from northeastern Pacific areas have also been figured (Westermann, 1969, 1992; Imlay, 1973, 1984; Taylor, 1988; Poulton et al., 1992). *Hebetoxyites* are relatively scarce, less than 5%, in the Iberian Range and the Catalan Coastal Range (Fig. 1). New field samplings in the Albarracín area and the revision of earlier collections provided more than one hundred macroconchs and microconchs of this genus, collected bed by bed, from the Ovale and Laeviuscula zones. The primary aim is to focus on the significance and diversity of *Hebetoxyites* at the Iberian carbonate platform system, from a taphonomic and palaeobiological view point, and identify its palaeobiogeographical and biochronological relevance.

II. PALAEOENVIRONMENTAL AND PALAEOBIOGEOGRAPHICAL SETTING

Aalenian and lowermost Bajocian deposits of the Iberian Range are commonly represented by condensed sections with stratigraphical discontinuities (Gómez &
Fernández-López, 2006). Taphonomic analysis of ammonite fossil-assemblages and taphofacies provide significant information on palaeoenvironmental cycles developed in the open-marine, carbonate deposits of the External Castilian, Aragonese and Tortosa platforms (Fernández-López & Gómez, 2004), independently tested with data of sequence stratigraphy. Particularly, taphonomic information of the lowermost Bajocian ammonite assemblages include the abundance of reelaborated, heterogeneous concretionary internal moulds, isolated concretionary body chambers and hollow ammonites, bearing traces of abrasion, bioerosion and encrusting organisms. These palaeoenvironmental indicators imply low rates of sedimentation, punctuated by occasional high rates of sediment accumulation, due to sedimentary winnowing and bypassing interrupted by storm deposition in shallow-water marine environments (Fernández-López, 2011). These taphonomic results corroborate the development of an incipient-deepening phase, which represents the first episode of a deepening half-cycle of third order, in the Castilian Platform during the Bajocian, Ovale and Laeviuscula biochrons (Fernández-López, 1997, 2004, 2011).

In the Iberian platform system, the distribution of ammonite shells was taphonomically and ecologically controlled by regional changes of relative sea level. Generally, early Bajocian ammonite assemblages of the Castilian Platform show a mixing of NW European and Mediterranean elements with some Submediterranean representatives. Ammonite shell supply occurred preferentially from more septentrional epicontinental seas; however, the proportion of Mediterranean elements increased during the early Bajocian.

Macroconchs and microconchs of ammonites represent distinct taphonomic groups, or taphons, due to their structural and behaviour differences (Fernández-López, 2006, 2007). Taphons are integrated by local taphonic populations, which can be preserved in particular environments. Within early Bajocian ammonite assemblages of the Castilian Platform, taphonic populations of type-3 dominate, whereas type-2 is very scarce and 1 is virtually absent. Type-3 populations have unimodal or polymodal, asymmetric distribution of size frequencies, with negative skew and dominant adults, juvenile shells are virtually absent. Type-1 populations, dominated by juvenile shells, indicate eudemic taxa. Generally, autochthonous biogenic production of shells is not recognized. Most early Bajocian ammonites of the Castilian Platform, dominated by adults are the result of regional necrokinesis or local immigration without sustained colonization. Most of these lower Bajocian ammonite shells of the Castilian Platform represent ademic organisms interpreted as allochthonous elements arriving at their present location by necroplanktic drift from northern, more open marine or oceanic areas. In contrast, some genera including Hebetoxites (Fig. 2) show taphonic populations of type-2, comprising monospecific or polyspecific shells with unimodal, normal distribution of size-frequencies with dominant pre-adults and absence of juveniles. Microconchs occur in low proportions. Several fragmentary Hebetoxites macroconchs from the Iberian Range indicate adult-sizes larger than 200 mm, although H. hebes, H. incongruens and H. mouterdei have adult-sizes larger than 95, 85 and 80 mm respectively. The occurrence of type-2 populations without evidence of sorting by necroplanktic drift or transport indicates autochthonous biogenic pro-
Dimorphism and endemism in *Hebetoxyites* from the Iberian Range (Spain)

Production of shells by miodemic (actively biodispersed) or parademic (passively biodispersed), indigenous populations of *Hebetoxyites* on the Iberian platform system. Immigration and colonization of the eastern margin of Iberia by demic *Hebetoxyites* in the Ovale and Laeviuscula zones is evidence of a deepening episode, but these habitats were epicontinental platforms with neritic environments flooded by shallow marine waters. *Hebetoxyites* seems pandemic, but species of *Hebetoxyites* from the Iberian Range (*H. hebes*, *H. incongruens* and *H. mouterdei*) are notably western Tethyan in distribution. The occurrence of populations inhabiting shallow-water marine environments of the Iberian platform system is interpreted as being diagnostic criterion of the Submediterranean endemic nature of these three early Bajocian species.

III. SYSTEMATICS

Class Cephalopoda Cuvier, 1798
Subclass Ammonoidea Zittel, 1884

Order Ammonitida Zittel, 1884
Suborder Haplocerina Besnosov & Mikhailova, 1983
Superfamily Haploceratoidea Zittel, 1884
Family Hebetoxyitidae Buckman, 1924

Buckman (1924 in 1909-1930) erected the family *Hebetoxyitidae* to include *Hebetoxyites*, *Kleistoxyites* and *Amblyoxyites*. They have discoidal shells, which lack a keel, with rounded venter, falcoid ribs and moderately complex sutures. The rounded venter and suture-line are of lissoceratid style. In *Hebetoxyites* it is less complex than in *Lissoceras*, but in *Amblyoxyites* it attains almost the complexity of an oppelid. In *Hebetoxyitidae*, the ribs continue across the whorl, whereas in oppelids ribbing is irregular with primary ribs divided by secondaries which are often confined to the outer part of the flank. Buckman (1924 in 1909-1930) considered the phyletic position of the *Hebetoxyitidae* to be after the Lissoceratidae, with an origin similar to oppelids. The *Hebetoxyitidae*, in particular *Hebetoxyites*, differ from Strigoceratidae by the absence of hollow floored

Fig. 2: Size-frequency distributions of macroconchs (A) and microconchs (B) of *Hebetoxyites* from the Iberian Range, including macroconchs of *Hebetoxyites hebes* (C), *H. incongruens* (D) and *H. mouterdei* (E). The histograms of taphonomic populations are plotted in terms of five frequency classes, indicating the proportion of bodychambers, complete shells (with bodychamber and phragmocone) and incomplete phragmocones. Note the higher relative abundance of bodychambers in the intermediate classes or frequency groups, as diagnostic criterion of taphonic populations of type-2.
keel, strigation and a simpler suture line characteristic of the Oppeliidae (ARKELL, 1950; STURANI, 1971; TAYLOR, 1988; DIETZE et al., 2007; SCHWEIGERT et al., 2007). Hebetoxyites has been placed in the Strigoceratidae due to its falcoid or falcate ribbing and lateral spiral ridge (ARKELL et al., 1957; SCHINDEWOLF, 1963 in 1961-1968; IMLAY, 1964, 1973, 1984; WESTERMANN, 1969; CALLOMON, 1981; PAVIA, 1983; FERNÁNDEZ-LÓPEZ, 1985; SANDOVAL, 1985, 1990; CALLOMON & CHANDLER, 1990; CECCE et al., 1991; SADKI, 1996; RIOUTL et al., 1997; YIN, 2010). CALLOMON (1981) included the Hebetoxyitidae as a synonym of Strigoceratidae, but erected a new subfamily Bradfordinae, separating the Oppeliinae sensu stricto to make two distinct phyletic strands of the Oppeliidae based, respectively, in Bradfordiidae and Oppelia. DIETZE et al. (2007) considered Amblyoxyites BUCKMAN, Toxamblyites BUCKMAN, Stegoxyites BUCKMAN and perhaps Hebetoxyites BUCKMAN to fall somewhere between these two phyletic strands, lacking strigation and a hollow floored keel characteristic of strigoceratids. Hebetoxyites was excluded from the Strigoceratidae and included in the Oppeliidae s.l. WESTERMANN (1969) and FERNÁNDEZ-LÓPEZ (1985) concluded that the microconchs of Hebetoxyites were minute, evolute and with lateral lappets. The larger macroconchs are involute with simple peristome. This hypothesis is examined further here. The earliest known Hebetoxyitidae occur in the Aalenian, Concavum Zone of north-eastern Pacific areas (TAYLOR, 1988; POULTON et al., 1992) and the latest representatives have been referred to the Humphriesianum Zone of Tibet (YIN, 2010). The phyletic position of the monospecific genus Kleistoxites from the Discites Zone of England (BUCKMAN, 1922 in 1909-1930, pl. 317; CALLOMON & CHANDLER, 1990) needs further investigation. The Hebetoxyitidae, based in Hebetoxyites, show inner whors smooth with rounded venter, such as in Lissoceras and Amblyoxyites, but ribbing not projected at the venter and the intermediate and outer whors display blunt fastigation. Therefore, within the superfamiy Haploceratoidea (ZITTEL, 1884) of the suborder Haplocerina (BESNOV & MICHAIOVA, 1983; cf. SHEVYREV, 2006; PAGE, 2008), besides the basal families Lissoceratidae (DOUVILLE, 1885) and Oppeliidae (DOUVILLE, 1890), the family Hebetoxyitidae (BUCKMAN, 1924 in 1909-1930) evolved during the late Aalenian and early Bajocian.

Genus Hebetoxyites BUCKMAN, 1924

Type species: Hebetoxyites hebes BUCKMAN, 1924 in 1909-1930, by original designation (BUCKMAN, 1924 in 1909-1930, pl. 475).

Diagnosis: Discoidal shells from small to medium size. Shells are compressed to oyocones, with a slight rise of the flanks around two-fifths of the whorl height. The umbilicus is narrow (U/D= 5-35% in post-juvenile stages; Fig. 3), with distinct or raised margin. The whorl section is broadest at the lateral ridge, from which ventrally the flanks converge gently towards a narrow rounded venter. The inner whors are smooth, with a rounded venter. Mid and outer whors have a blunt fastigate venter, but never a keel. The aperture is simple in macroconchs and possesses lappets in microconchs. Ribbing is falcoid or falcate, with blunt costae, simple or irregularly branched which may become stronger on the outer half of the flank. Primaries are bundled at the inner flank. The ribbing abuts the venter but is not projected.

![Fig. 3: Plots of measurements of Hebetoxyites from the Iberian Range. A, external ribs per half whorl (Ne/2) versus shell diameter (D). B, whorl-width (W) versus shell diameter (D). C, umbilical diameter (U) versus shell diameter (D).](image-url)
forward at the periphery and weakens on the outer flank through ontogeny. On the adult body chamber the ribbing fades completely or is very feeble. The suture line is moderately complex. The ventral lobe is wide, with a moderately broad lateral lobe extending beyond the ventral and second lateral lobes. The second lateral saddle is higher than the first lateral saddle (Fig. 4).

Discussion: Adult *Hebetoxytes* microconchs have a tendency to develop elliptical coiling of the last whorl, with the body chamber becoming more inflated, the whorl height is reduced while the venter becomes more rounded. Microconchs with lappets have been suggested among specimens from Alaska (Westermann, 1969, 1992) and the Iberian Range (Fernández-López, 1985). However, the Alaskan adult internal moulds with lappets have a more elliptical coiling style than the Iberian specimens, with the umbilical seam egressing almost radially before returning to spiral coiling. The Alaskan microconchs referred to this taxon were associated with macroconchs of “Bradfordia? (Praeoppelia) oppeliiformis” Westermann (1969, p. 48) so the possible dimorphism between these Alaskan microconchs and macroconchs needs further study.

The inner whorls of microconch from the Iberian Range have a rounded venter, similar to *Protoecotraustes* Spath (1928 in 1927-1933; type species “P. duandrensis” Spath, 1928 in 1927-1933) and *Microlissoceras* Sturani (1971; type species “Lissoceras (Microlissoceras) pusillum” Sturani, 1971). However, *Protoecotraustes* develops a tabulate venter on the outer whorl and *Microlissoceras* lacks a distinct or raised umbilical margin. *Oecotraustes* Waagen (1869; type species “O. genicularis” WAAGEN, 1869) has a feeble keeled. The ribbing of *Hebetoxytes* macroconchs has similarities with a number of other published taxa, including: *Oppelia* WAAGEN (1869; type species “Ammonites subradiatus” J. de C. Sowerby, 1823 in Sowerby & Sowerby, 1812-1846), *Strigoceras* Quenstedt (1886; type species “Ammonites truellei” d’Orbigny, 1845 in 1842-50), *Bradfordia* Buckman (1910; type species: “B. liomphala” Buckman, 1910, pl. 10, figs. 4-5), *Amblyoxyites* Buckman (1922 in 1909-1930; type species “A. amblys” Buckman, 1922 in 1909-1930, TA-IV, pl. 303), *Kleistoxites* Buckman (1922 in 1909-1930; type species “K. protrusus” Buckman, 1922 in 1909-1930, TA-IV, pl. 317), *Liroxyites* Imlay (1961; type species “Oppelia (Liroxyites) kellumi” IMLAY, 1961), *Praeoppelia* Westermann (1969; type species “P. oppeliiformis” WESTERMANN, 1969) or *Etropelia* Sapunov (1971; type species “Harpoceras blumius” de Gregorio, 1886). However, *Oppelia* has a feeble keel and complex sutures, with wide first lateral lobe. *Strigoceras* has strigation on the test, a tall hollow floored keel and complex sutures. *Bradfordia*, *Amblyoxyites*, *Praeoppelia* and *Etropelia* have a rounded venter with ribs projected or forming blunt chevrons. *Kleistoxites* appears to be older and has more complex sutures, with narrow first lateral lobe and longer ventral lobe. *Liroxyites* IMLAY is younger and show complex sutures.

Distribution: *Hebetoxytes* appears to be pandemic, known in both Tethyan and Pacific areas. Tethyan *Hebetoxytes* are known from Europe, northern Africa and Tibet: England (Buckman, 1924 in 1909-1930; Parsons, 1979; Donovan et al., 1981; Dietze et al., 2007), France (Rioul et al., 1997), Iberian Basin (Fernández-López, 1985, 2011; Fernández-López et al., 1996, 1999), Apennines (Cresta & Galacz, 1990; Cecca et al., 1992).
Hebetoxytes hebes BUCKMAN, 1924 [M & m]
Figs. 4A-C, 5A-R, Tabl. 1

1924. *Hebetoxytes clypeus* BUCKMAN, 1909-1930, TA-5, pl. 496A (holotype)-496B.

Material: 52 specimens from three localities: 2 specimens from Gea de Albarracín (Ovale Zone: 2G2A1/2; Laeviuscula Zone: 1GA39/1) 49 specimens from Masada Toyuela (Laeviuscula Zone: 1MT2/1, 2, 7, 9, 12-13, 302, 314-315, 321, 325-326, 329, 331-338, 341-243, 345, 347-349, 351-355, 358-359, 361, 367, 369, 370-373, 1062-1063; upper Laeviuscula Zone: 1MT2d/1205-1206, 1208; 3MT2/1-2, 4) and 1 specimen from Llaberia-Bco. Romulta (Ovale Zone: 36L6/1).

Diagnosis: Macroconch and microconch specimens with a minute or narrow umbilicus and distinct or slightly raised umbilical margin. The inner flanks are slightly convex. Ribbing is falcoid, simple or irregularly branched, with some secondary ridges on the outer flank.

Discussion: Iberian collections of this taxonomic group are dominated by pre-adults along with several fragmentary specimens indicating adult sizes larger than 95 mm. The holotype of *H. hebes* lacks elliptical coiling of the last whorl and would appear to be a pre-adult of approximately 70 mm diameter. It came from the Lower White Ironshott of Dundy in Avon (England). The syntypes of *H. clypeus* are incomplete phragmocones, from the lower part of the Fossil Bed of Sandford Lane near Sherborne (England; R. CHANDLER pers. com.; cf. Buckman, 1893, bed 6d.) and the holotype is a specimen in excess of 200 mm diameter. Specimens of *H. clypeus* and *H. cf. hebes* were identified in the Iberian Range (FERNÁNDEZ-LÓPEZ, 1985) and Catalan coastal Range (FERNÁNDEZ-LÓPEZ et al., 1996, 1999). However, considering their similar morphological features and close parallel chronology, *H. clypeus* is interpreted here as a junior synonym of *H. hebes*. Some specimens from England identified as *H. hebes* (DIETZE et al., 2007, fig. 7e) and others from the Betic Basin identified as *H. incongruens* (SANDOVAL, 1985, pl. 2, figs. 5-9) with prominent costae and a raised umbilical margin, may belong to *H. mouterdei*. Tibetan specimens ascribed to *H. cf. hebes* (YIN, 2010, pl. 5, figs. 5-7) are stout-whorled and probably younger than the West Tethyan examples.

Distribution: *H. hebes* is the commonest and most widely distributed species of the genus, characterizing the lower Bajocian, Ovale and Laeviuscula zones of England (BUCKMAN, 1924 in 1909-1930; PARSONS, 1979; DONOVAN et al., 1981; DIETZE et al. 2007), Iberian Basin (FERNÁNDEZ-LÓPEZ, 1985, 2011; FERNÁNDEZ-LÓPEZ et al., 1996, 1999), Betic Basin (SANDOVAL, 1990; JIMÉNEZ et al., 1999; SANDOVAL et al., 2001), Atlas (SADKI, 1996) and France (RIOUT et al., 1997).

Hebetoxytes incongruens BUCKMAN, 1924 [M & m]
Figs. 4D-E, 6A-J, Tabl. 2

2007. *Hebetoxytes incongruens* BUCKMAN.— SCHWEIGERT et al., p. 49, fig. 27 (holotype).

Material: 29 specimens from Masada Toyuela (Laeviuscula Zone: 1MT2/2, 6, 8, 306, 313, 316-318, 320, 322-324, 328, 330, 339, 344, 350, 356, 357, 360, 365, 368; upper Laeviuscula Zone: 1MT2d/366, 1204, 1209-1210, 1212-1214).

Diagnosis: Macroconchs and microconchs with a minute or very narrow umbilicus and distinct umbilical margin and inner flank that is flat or slightly convex. The ribbing is falcoid, simple or irregularly branched, with numerous secondaries on the outer flank.

Discussion: The Iberian specimens of this taxonomic group are dominated by pre-adults and fragmentary specimens indicating adult sizes larger than 85 mm diameter. The holotype of *H. incongruens* comes from the Fossil Bed of Sandford Lane. It is an incomplete pre-adult of size larger than 70 mm diameter. The holotype and Iberian specimens differ from *H. hebes* in morphology, by being more involute and possessing numerous secondaries on the outer flank.

Distribution: The holotype of *H. incongruens*, from the Fossil Bed of Sandford Lane near Sherborne (England), probably corresponds to the lower Laeviuscula Zone (BUCKMAN, 1924 in 1909-1930; SCHWEIGERT et al., 2007). The species has been collected from the same zone of the Betic Basin (SANDOVAL, 1990) and Atlas (SADKI, 1996). The known specimens from the Iberian Range also correspond to the Laeviuscula Zone.

Hebetoxyites mouterdei FERNÁNDEZ-LÓPEZ, 1985 [M & m]
Figs. 4F, 7A-L, 8, Tabl. 3

1985. *“Hebetoxytes” mouterdei* FERNÁNDEZ-LÓPEZ, p. 155, figs. 13-14c, pl. 14, fig. 5A-B (holotype).
1985. *Hebetoxytes aff. clypeus* BUCKMAN.— FERNÁNDEZ-LÓPEZ, p. 154, pl. 14, fig. 2A-B.
2007. *Hebetoxytes hebes* BUCKMAN.— DIETZE et al., p. 20, fig. 7e.
Material: 27 specimens from five localities: 1 specimen from Gea de Albarracín (Ovale Zone: 2GA21/1); 21 specimens from Masada Toyuela (Ovale Zone: 1MT2a/4-5, 11; Ovale and Laeviuscula zones: 1MT2/301, 303-305, 307-312, 319, 327, 340, 346, 1042, 1049, 1069, 1211); 3 specimens from Moscardon (Ovale and Laeviuscula zones: M10U50/16, M10U75/9, M12L5/5); 1 specimen from Obon (Ovale Zone: ON17/1) and 1 specimen from Villel (Laeviuscula Zone: VE1t/1).

Diagnosis: Macroconchs and microconchs. The umbilicus is narrow with a raised margin. The inner flanks are markedly convex abutting the raised umbilical edge with a shallow depression on the most dorsolateral portion of the flank. The ribbing is falcoid and simple. Costae are prominent and cover the inner and outer areas of the mid flank. They are sometimes bundled in pairs on the inner flank area.

Discussion: The holotype of *H. mouterdei* (Figs. 7L and 8) is an incomplete specimen of a pre-adult, probably a microconch, greater than 25 mm diameter. Among the Iberian macroconchs of this taxonomic group, pre-adults are dominant and several fragmentary specimens indicate adult-sizes larger than 80 mm diameter. The Iberian specimens differ from *H. hebes* and *H. incongruens* morphologically in being less compressed, more evolute, with a raised umbilical margin and more prominent
Dimorphism and endemism in *Hebetoxyites* from the Iberian Range (Spain)

Fig. 8: Holotype of *Hebetoxyites mouterdei* FERNÁNDEZ-LÓPEZ [m]. Ovale Zone from Obon (Teruel). Ventral and left side views, specimen ON17/1. Phosphatic internal mould of bodychamber and phragmocone with local remains of calcitic pseudomorphic shell. Scale bar 10 mm.
costae. *Hebetoxyites snowshoensis* TAYLOR (1988, p. 135, p. 4, figs. 1-2), from the Discites Zone of Oregon has stouter whorls, a broader and more rounded venter and weaker ribbing on the outer flank.

Distribution: All the Iberian specimens known of this species are reelerbored elements recorded in deposits of the Laeviuscula Zone. However, at least some of these specimens, including the holotype, probably belong to the Ovale Zone. This species is also identified in Laeviuscula Zone of the Betic Basin (SANDOVAL, 1990; JIMÉNEZ et al., 1999) and Atlas (SADKI, 1996).

IV. DISCUSSION AND CONCLUSIONS

Three species of *Hebetoxyites* occur in the lower Bajocian, Ovale and Laeviuscula zones of the Iberian Range: *H. hebes* BUCKMAN, *H. incongruens* BUCKMAN and *H. mouterdei* FERNÁNDEZ-LÓPEZ. Both dimorphs, macroconchs and microconchs, occur as taphonic populations of type-2, with dominant pre-adults, due to autochthonous biogenic production of shells by miocidic (actively biodispersed) or paracenic (passively biodispersed) populations on the Iberian platform system. The occurrence of indigenous populations of these western Tethyan species of *Hebetoxyites* inhabiting shallow-water marine environments indicates immigration and colonization by Submediterranean taxa. This episode of immigration and colonization corresponds with an incipient-deepening phase within a deepening half-cycle of third order, in the Castilian Platform during the early Bajocian. Therefore, in accordance with the terminology presented by WESTERMANN (2001), two regional bio-events controlled by changes of relative sea level can be distinguished: 1) regional appearance and immigration of *Hebetoxyites* at the Discites/Ovale transition and 2) regional disappearance of the representatives of *Hebetoxyites* at the Laeviuscula/Sauzei transition.

In conclusion, a chronocline can be recognized, beginning with stony forms of the Ovale Zone, strongly ribbed with simple falcoid ribs, narrow umbilicus and raised umbilical margin (including *H. mouterdei*) through intermediate form like *H. hebes*, the type of the genus, to oxycones of the Laeviuscula Zone with blunt, simple or irregularly branched ribbing, numerous secondaries on the outer flank and minute umbilicus with a distinct margin (including *H. incongruens*). This chronocline represents a peramorphotic outcome of palengenic evolution and provides a basis for biochronology, subzonal division and correlation within the Ovale and Laeviuscula zones in the Iberian Range (Fig. 9). The lineage origination of *Hebetoxyites* remains unresolved, but Hebetoxyitidae evolved in addition to the parallel phylectic groups of Haplocerina, Lissoceratidae and Oppellidae, during the late Aalenian and early Bajocian.

Fig. 9: Range chart of the three species of *Hebetoxyites* identified in the Iberian Range from the lower Bajocian, Ovale and Laeviuscula zones.

ACKNOWLEDGEMENTS

I thank R. B. CHANDLER (Whyteleafe, England) for photographs and field information on the occurrence of *Hebetoxyites* and other Jurassic ammonites. I am grateful to the referees, R. B. CHANDLER and G. PAVIA (Univ. Torino, Italy), for their constructive comments and suggestions which improved the original manuscript. This work was supported by the research projects CGL2008-01273 (MICINN) and CGL2011-23947 (MICINN), and grants from the Dirección General de Patrimonio Cultural del Gobierno de Aragón (Nº. Exp. 040/08-2009) and the Fundación Conjunto Paleontológico de Teruel-Dinópolis (2008-2009).

REFERENCES

Dimorphism and endemism in *Hebetoxytes* from the Iberian Range (Spain)

Accepted August 1st, 2011
Appendix

Abbreviations and measurements for specimens of *Hebetoxyites* from the Iberian Range. Stratigraphical information is indicated by a locality number and section letter: sections 1MT (Masada Toyuela), 1GA and 2GA (Gea de Albarracin), 36L (Llaveria km 36-Bco. Romulta), M (Moscardon), ON (Onob Norte) and VE (Villel); stratigraphical levels and /n = number of specimen. [M] and [m] indicate macroconch and microconch respectively. Measurements are given in mm and include maximum shell diameter at which the following measurements were taken (D), whorl-height (H), whorl-height/diameter ratio (H/D), whorl-width (W), whorl-width/diameter ratio (W/D), umbilical diameter (U), umbilicus/diameter ratio (U/D), whorl-width/whorl-height ratio (W/H) and external ribs per half whorl (Ne/2).

Table 1: Measurements for the specimens of *Hebetoxyites hebes* BUCKMAN, 1924 [M & m].

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Figure</th>
<th>D</th>
<th>H</th>
<th>H/D</th>
<th>W</th>
<th>W/D</th>
<th>U</th>
<th>U/D</th>
<th>W/H</th>
<th>Ne/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MT2/1</td>
<td>5B</td>
<td>59.0</td>
<td>34.0</td>
<td>57.6%</td>
<td>13.0</td>
<td>22.0%</td>
<td>4.3</td>
<td>7.3%</td>
<td>0.38</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.0</td>
<td>22.0</td>
<td>59.5%</td>
<td>9.0</td>
<td>24.3%</td>
<td>4.4</td>
<td>11.9%</td>
<td>0.41</td>
<td>–</td>
</tr>
<tr>
<td>1MT2/358</td>
<td>5E</td>
<td>43.0</td>
<td>23.8</td>
<td>55.3%</td>
<td>8.5</td>
<td>19.7%</td>
<td>3.1</td>
<td>7.3%</td>
<td>0.36</td>
<td>26</td>
</tr>
<tr>
<td>1MT2/265</td>
<td>5F</td>
<td>41.0</td>
<td>24.6</td>
<td>60.0%</td>
<td>7.8</td>
<td>19.1%</td>
<td>3.0</td>
<td>7.3%</td>
<td>0.32</td>
<td>20</td>
</tr>
<tr>
<td>1MT2/25</td>
<td>4A, 5H</td>
<td>39.0</td>
<td>22.7</td>
<td>58.2%</td>
<td>8.7</td>
<td>22.4%</td>
<td>3.7</td>
<td>9.4%</td>
<td>0.38</td>
<td>25</td>
</tr>
<tr>
<td>1MT2/7</td>
<td>–</td>
<td>35.0</td>
<td>19.0</td>
<td>54.3%</td>
<td>8.2</td>
<td>23.4%</td>
<td>5.0</td>
<td>14.3%</td>
<td>0.43</td>
<td>27</td>
</tr>
<tr>
<td>1GA39/1</td>
<td>–</td>
<td>32.0</td>
<td>17.4</td>
<td>54.4%</td>
<td>6.5</td>
<td>20.3%</td>
<td>4.9</td>
<td>15.3%</td>
<td>0.37</td>
<td>25</td>
</tr>
<tr>
<td>1MT2/9</td>
<td>–</td>
<td>32.0</td>
<td>18.6</td>
<td>58.1%</td>
<td>7.5</td>
<td>23.4%</td>
<td>4.0</td>
<td>12.5%</td>
<td>0.40</td>
<td>26</td>
</tr>
<tr>
<td>1MT2/333</td>
<td>–</td>
<td>31.0</td>
<td>14.3</td>
<td>46.1%</td>
<td>7.7</td>
<td>24.8%</td>
<td>4.1</td>
<td>13.2%</td>
<td>0.54</td>
<td>20</td>
</tr>
<tr>
<td>1MT2/354</td>
<td>5J</td>
<td>26.0</td>
<td>14.0</td>
<td>53.8%</td>
<td>6.1</td>
<td>23.5%</td>
<td>2.8</td>
<td>10.8%</td>
<td>0.44</td>
<td>20</td>
</tr>
<tr>
<td>1MT2/369</td>
<td>5M</td>
<td>26.0</td>
<td>11.0</td>
<td>42.3%</td>
<td>4.7</td>
<td>18.1%</td>
<td>5.3</td>
<td>20.4%</td>
<td>0.43</td>
<td>22</td>
</tr>
<tr>
<td>1MT2/367</td>
<td>5P</td>
<td>26.0</td>
<td>10.2</td>
<td>39.2%</td>
<td>5.9</td>
<td>22.7%</td>
<td>6.6</td>
<td>25.4%</td>
<td>0.58</td>
<td>17</td>
</tr>
<tr>
<td>2GA21/2</td>
<td>5K</td>
<td>25.0</td>
<td>13.4</td>
<td>53.6%</td>
<td>4.9</td>
<td>19.6%</td>
<td>3.8</td>
<td>15.2%</td>
<td>0.37</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0</td>
<td>11.0</td>
<td>55.0%</td>
<td>4.1</td>
<td>20.5%</td>
<td>3.7</td>
<td>18.5%</td>
<td>0.37</td>
<td>20</td>
</tr>
<tr>
<td>1MT2/370</td>
<td>5N</td>
<td>25.0</td>
<td>10.7</td>
<td>42.8%</td>
<td>5.0</td>
<td>19.8%</td>
<td>7.1</td>
<td>28.4%</td>
<td>0.46</td>
<td>18</td>
</tr>
<tr>
<td>1MT2/1206</td>
<td>4B,5Q</td>
<td>25.0</td>
<td>10.4</td>
<td>41.6%</td>
<td>4.0</td>
<td>16.0%</td>
<td>7.1</td>
<td>28.4%</td>
<td>0.38</td>
<td>20</td>
</tr>
<tr>
<td>1MT2/372</td>
<td>5O</td>
<td>24.6</td>
<td>9.8</td>
<td>39.6%</td>
<td>5.1</td>
<td>20.7%</td>
<td>6.4</td>
<td>26.0%</td>
<td>0.52</td>
<td>18</td>
</tr>
<tr>
<td>1MT2/353</td>
<td>4C, 5L</td>
<td>20.0</td>
<td>10.2</td>
<td>51.0%</td>
<td>4.6</td>
<td>23.0%</td>
<td>3.3</td>
<td>16.5%</td>
<td>0.45</td>
<td>13</td>
</tr>
<tr>
<td>1MT2/331</td>
<td>5I</td>
<td>20.0</td>
<td>10.2</td>
<td>51.0%</td>
<td>4.6</td>
<td>23.0%</td>
<td>4.1</td>
<td>20.5%</td>
<td>0.45</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 2: Measurements for the specimens of *Hebetoxyites incongruens* BUCKMAN, 1924 [M & m].

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Figure</th>
<th>D</th>
<th>H</th>
<th>H/D</th>
<th>W</th>
<th>W/D</th>
<th>U</th>
<th>U/D</th>
<th>W/H</th>
<th>Ne/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MT2/328</td>
<td>–</td>
<td>62.0</td>
<td>36.7</td>
<td>59.2%</td>
<td>12.5</td>
<td>20.2%</td>
<td>3.5</td>
<td>5.6%</td>
<td>0.34</td>
<td>26</td>
</tr>
<tr>
<td>1MT2d/1212</td>
<td>6D</td>
<td>57.0</td>
<td>34.0</td>
<td>59.6%</td>
<td>12.8</td>
<td>22.5%</td>
<td>3.1</td>
<td>5.4%</td>
<td>0.38</td>
<td>35</td>
</tr>
<tr>
<td>1MT2/2</td>
<td>6E</td>
<td>52.3</td>
<td>30.9</td>
<td>59.1%</td>
<td>10.4</td>
<td>19.9%</td>
<td>3.3</td>
<td>6.3%</td>
<td>0.34</td>
<td>29</td>
</tr>
<tr>
<td>1MT2/8</td>
<td>–</td>
<td>35.0</td>
<td>19.0</td>
<td>54.3%</td>
<td>7.3</td>
<td>20.9%</td>
<td>3.0</td>
<td>8.6%</td>
<td>0.38</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.4</td>
<td>12.3</td>
<td>52.6%</td>
<td>5.3</td>
<td>22.6%</td>
<td>3.0</td>
<td>12.8%</td>
<td>0.43</td>
<td>–</td>
</tr>
<tr>
<td>1MT2d/1204</td>
<td>6G</td>
<td>32.0</td>
<td>13.5</td>
<td>42.2%</td>
<td>5.9</td>
<td>5.0%</td>
<td>6.9</td>
<td>21.6%</td>
<td>0.44</td>
<td>29</td>
</tr>
<tr>
<td>1MT2/368</td>
<td>6H</td>
<td>31.5</td>
<td>13.9</td>
<td>44.1%</td>
<td>6.1</td>
<td>19.4%</td>
<td>6.5</td>
<td>20.6%</td>
<td>0.44</td>
<td>23</td>
</tr>
<tr>
<td>1MT2/365</td>
<td>4D, 6J</td>
<td>26.0</td>
<td>11.1</td>
<td>42.7%</td>
<td>4.6</td>
<td>17.7%</td>
<td>6.4</td>
<td>24.6%</td>
<td>0.41</td>
<td>26</td>
</tr>
</tbody>
</table>
Table 3: Measurements for the specimens of *Hebetoxytes mouterdei* FERNANDEZ-LOPEZ, 1985 [M & m].

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Figure</th>
<th>D</th>
<th>H</th>
<th>H/D</th>
<th>W</th>
<th>W/D</th>
<th>U</th>
<th>U/D</th>
<th>W/H</th>
<th>Ne/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MT2/4</td>
<td>7B</td>
<td>52.0</td>
<td>28.5</td>
<td>54.8%</td>
<td>10.3</td>
<td>19.8%</td>
<td>4.4</td>
<td>8.5%</td>
<td>0.36</td>
<td>21</td>
</tr>
<tr>
<td>1MT2/310</td>
<td>7A</td>
<td>51.0</td>
<td>30.0</td>
<td>58.8%</td>
<td>12.0</td>
<td>23.5%</td>
<td>4.5</td>
<td>8.8%</td>
<td>0.40</td>
<td>18</td>
</tr>
<tr>
<td>1MT2/5</td>
<td>7C</td>
<td>45.0</td>
<td>24.9</td>
<td>55.3%</td>
<td>9.9</td>
<td>22.0%</td>
<td>6.7</td>
<td>14.9%</td>
<td>0.40</td>
<td>17</td>
</tr>
<tr>
<td>1MT2/312</td>
<td>7D</td>
<td>36.0</td>
<td>19.5</td>
<td>54.2%</td>
<td>9.4</td>
<td>26.1%</td>
<td>4.6</td>
<td>12.8%</td>
<td>0.48</td>
<td>18</td>
</tr>
<tr>
<td>1MT2/301</td>
<td>7G</td>
<td>35.0</td>
<td>17.7</td>
<td>50.6%</td>
<td>8.8</td>
<td>25.1%</td>
<td>4.4</td>
<td>12.6%</td>
<td>0.50</td>
<td>19</td>
</tr>
<tr>
<td>1MT2/1211</td>
<td>7F</td>
<td>34.0</td>
<td>18.3</td>
<td>53.8%</td>
<td>9.4</td>
<td>27.6%</td>
<td>4.6</td>
<td>13.5%</td>
<td>0.51</td>
<td>17</td>
</tr>
<tr>
<td>1MT2/1049</td>
<td>7H</td>
<td>31.0</td>
<td>16.0</td>
<td>51.6%</td>
<td>6.7</td>
<td>21.6%</td>
<td>4.2</td>
<td>13.5%</td>
<td>0.42</td>
<td>–</td>
</tr>
<tr>
<td>1MT2/1069</td>
<td>7K</td>
<td>25.0</td>
<td>12.9</td>
<td>51.6%</td>
<td>5.6</td>
<td>22.4%</td>
<td>4.3</td>
<td>17.2%</td>
<td>0.43</td>
<td>15</td>
</tr>
<tr>
<td>ON17/1 holotype</td>
<td>4F, 7L</td>
<td>24.0</td>
<td>11.0</td>
<td>45.8%</td>
<td>6.1</td>
<td>25.4%</td>
<td>6.8</td>
<td>28.3%</td>
<td>0.55</td>
<td>17</td>
</tr>
<tr>
<td>1MT2/308</td>
<td>7J</td>
<td>23.0</td>
<td>11.4</td>
<td>49.6%</td>
<td>6.0</td>
<td>26.1%</td>
<td>5.1</td>
<td>22.2%</td>
<td>0.53</td>
<td>15</td>
</tr>
<tr>
<td>1MT2/307</td>
<td>–</td>
<td>15.0</td>
<td>6.8</td>
<td>45.3%</td>
<td>3.6</td>
<td>24.0%</td>
<td>4.3</td>
<td>28.7%</td>
<td>0.53</td>
<td>16</td>
</tr>
</tbody>
</table>