Publication:
Scanning tunnelling microscopy and spectroscopy of nanocrystalline silicon films

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-09
Authors
Méndez Martín, Bianchi
Piqueras de Noriega, Javier
Plugaru, R
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Iop Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Scanning tunnelling microscopy (STM) has been sometimes applied in recent years to characterize porous silicon. In contrast, other forms of light emitting Si, such as nanocrystalline silicon films, prepared by different methods, have not been, or are only occasionally, studied by STM related techniques. In this paper STM and spectroscopy measurements have been performed on nanocrystalline silicon films obtained by low pressure chemical vapour deposition followed by boron implantation. Subsequent annealing of the samples caused an increase of the crystallites size. Scanning tunnelling spectroscopy enabled us to determine the surface band gap in films. In all annealed nanocrystalline films the value of this gap is similar to the value in bulk Si. However, a large value of the gap, of about 4.5 eV, is measured in as-implanted films. The different behaviour is explained in terms of a quantum confinement effect related to the nanocrystal's size.
Description
© 2001 IOP Publishing Ltd. This work was supported by DGES (PB96-0639) and by the Scientific Cooperation Program between Spain and Romania.
Unesco subjects
Keywords
Citation
[1] Cullis A G, Canham L T and Calcott P D 1997 J. Appl. Phys. 82 909 [2] Shimizu-Iwayama T, Nakao S and Saitoh K 1994 Appl. Phys. Lett. 65 1814 [3] Mutti P, Ghislotti G, Bertoni S, Bonoldi L, Gerofolini G F, Meda L, Grilli E and Guzzi M 1995 Appl. Phys. Lett. 66 851 [4] Zhao X, Schoenfeld O, Kusano J, Aoyagi Y and Sugano T 1994 Japan. J. Appl. Phys. 33 L649 [5] Kanemitsu Y 1994 Phys. Rev. B 49 16845 [6] Shimizu-Iwayama T, Kurumado N, Hole D E and Townsend P D 1998 J. Appl. Phys. 83 6018 [7] Zhao X, Nomura S, Aoyagi Y and Sugano T 1996 J. Non-Cryst. Solids 198–200 847 [8] Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1999 Phys. Rev. Lett. 82 197 [9] Dumas Ph, Gu M, Syrykh C, Gimzewski J K, Makarenko I, Halimaui A and Salvan F 1993 Europhys. Lett. 23 197 [10] Dumas Ph, Gu M, Syrykh C, Halimaui A, Salvan F, Gimzewski J K and Schlitter R R 1994 J. Vac. Sci. Technol. B 12 2064 [11] Ito K, Ohyama S, Uehara Y and Ushioda S 1995 Appl. Phys. Lett. 67 2536 [12] Amisola G B, Behrensmeier R, Galligan J M, Otter F A, Namavar F and Kalkhoran N M 1992 Appl. Phys. Lett. 61 2595 [13] Yu T, Laiho R and Heikkil¨a L 1994 J. Vac. Sci. Technol. B 12 2437 [14] Pavlov A and Pavlova Y 1997 Thin Solid Films 297 132 [15] Laiho R, Pavlov A and Pavlova Y 1997 Thin Solid Films 297 138 [16] Méndez B, Piqueras J, Plugaru R, Craciun G, Nastase N, Cremades A and Nogales E 1998 Solid State Phenom. 63–64 191 [17] Piqueras J, Méndez B, Plugaru R, Craciun G, García J A and Rem´on A 1999 Appl. Phys. A 68 329 [18] Lin H A, Jaccodine R and Freund M S 1998 Appl. Phys. Lett. 72 1993 [19] Panin G, Díaz-Guerra C and Piqueras J 1998 Appl. Phys. Lett. 72 2129 [20] Hidalgo P, Méndez B, Piqueras J, Dutta P S and Dieguez E 1999 Phys. Rev. B 60 10613 [21] Stroscio J A, Feenstra R M and Fein A P 1986 Phys. Rev. Lett. 57 2579 [22] Feenstra R M, Stroscio J A and Fein A P 1987 Surf. Sci. 181 295 [23] Plugaru R, Piqueras J, M´endez B, Craciun G and Nastase N 1999 Mater. Res. Soc. Symp. Proc. 536 63 [24] Nomura S, Zhao X, Aoyagi Y and Sugano T 1996 Phys. Rev. B 54 13974 [25] Feenstra R M 1994 Phys. Rev. B 50 4561 [26] McEllistren M, Haase G, Chen D and Hammers R J 1993 Phys. Rev. Lett. 70 2471 [27] Seto J Y W 1975 J. Appl. Phys. 46 5247 [28] Lee E G and Im H B 1991 J. Electrochem. Soc. 138 3465
Collections